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Summary

1. Prediction is fundamental to scientific enquiry and application; however, ecologists tend to

favour explanatory modelling. We discuss a predictive modelling framework to evaluate eco-

logical hypotheses and to explore novel/unobserved environmental scenarios to assist conser-

vation and management decision-makers. We apply this framework to develop an optimal

predictive model for juvenile (<1 year old) sandhill crane Grus canadensis recruitment of the

Rocky Mountain Population (RMP). We consider spatial climate predictors motivated by

hypotheses of how drought across multiple time-scales and spring/summer weather affects

recruitment.

2. Our predictive modelling framework focuses on developing a single model that includes all

relevant predictor variables, regardless of collinearity. This model is then optimized for pre-

diction by controlling model complexity using a data-driven approach that marginalizes or

removes irrelevant predictors from the model. Specifically, we highlight two approaches of

statistical regularization, Bayesian least absolute shrinkage and selection operator (LASSO)

and ridge regression.

3. Our optimal predictive Bayesian LASSO and ridge regression models were similar and on

average 37% superior in predictive accuracy to an explanatory modelling approach. Our pre-

dictive models confirmed a priori hypotheses that drought and cold summers negatively affect

juvenile recruitment in the RMP. The effects of long-term drought can be alleviated by short-

term wet spring–summer months; however, the alleviation of long-term drought has a much

greater positive effect on juvenile recruitment. The number of freezing days and snowpack

during the summer months can also negatively affect recruitment, while spring snowpack has

a positive effect.

4. Breeding habitat, mediated through climate, is a limiting factor on population growth of

sandhill cranes in the RMP, which could become more limiting with a changing climate (i.e.

increased drought). These effects are likely not unique to cranes. The alteration of hydrologi-

cal patterns and water levels by drought may impact many migratory, wetland nesting birds

in the Rocky Mountains and beyond.

5. Generalizable predictive models (trained by out-of-sample fit and based on ecological

hypotheses) are needed by conservation and management decision-makers. Statistical regulari-

zation improves predictions and provides a general framework for fitting models with a large

number of predictors, even those with collinearity, to simultaneously identify an optimal pre-

dictive model while conducting rigorous Bayesian model selection. Our framework is impor-
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tant for understanding population dynamics under a changing climate and has direct applica-

tions for making harvest and habitat management decisions.

Key-words: Grus canadensis, least absolute shrinkage and selection operator, modelling, mul-

ticollinearity, Palmer drought index, Palmer drought severity index, predictive, ridge regres-

sion, SPEI, standardized precipitation–evapotranspiration index

Introduction

It remains true that if we can predict successfully on

the basis of a certain explanation, we have good rea-

son, and perhaps the best sort of reason, for accept-

ing the explanation (Kaplan 1964; Pg. 350).

Prediction is a fundamental part of science and para-

mount in science-based decision-making. There are both a

need and a demand for predictive models to assist deci-

sion-makers (Kendall 2001; Sutherland 2006). Generaliz-

able predictive models are needed to explore how novel

conditions, such as future environmental changes and

anthropogenic disturbances, will affect ecosystems, species

distributions and populations of managed species (e.g.

harvested or endangered). These models are also crucial

to evaluating alternative conservation and management

actions (e.g. hunting, habitat manipulation or reintroduc-

tion scenarios; Nichols et al. 2007). As such, predictive

modelling has practical importance to conservation deci-

sion-making and is an important approach to provide

insights about ecological processes (Sutherland 2006).

Ecologists tend to use explanatory modelling to under-

stand ecological processes, rather than predictive model-

ling, perhaps even when prediction is the goal (Shmueli

2010; Evans, Norris & Benton 2012; Hooten & Hobbs

2014). An explanatory modelling approach often focuses

on a small set of discrete models to evaluate competing

hypotheses about mechanistic processes motivated from

theory and past observations to infer processes from data

(Burnham & Anderson 2002). In contrast, a predictive

modelling approach emphasizes the forecasting of new or

future observations, possibly under novel scenarios. A con-

tinuous model set may be evaluated, which can lead to bet-

ter predictive performance than from a discrete set (Hastie,

Tibshirani & Friedman 2009). From a statistical perspec-

tive, predictive modelling is concerned with the generaliz-

ability of the model to predict beyond the sample space,

and thus, it is preferred to measure model fit based on out-

of-sample performance, rather than within-sample as often

used for explanatory modelling (Shmueli 2010; Hooten &

Hobbs 2014). Predictive and explanatory approaches are

not mutually exclusive and thus not inconsistent or incom-

patible (Kaplan 1964; Bickel & Li 2006); however, there

can be advantages in model performance when the

intended application of the model is consistent with the

modelling approach (Hastie, Tibshirani & Friedman 2009).

Ecologists may not be readily applying predictive model-

ling (i.e. out-of-sample model fitting) for a number of rea-

sons. First, statistical tools may not be known and

accessible (Mac Nally 2000; Hooten & Hobbs 2014). Alter-

natively, ecologists may consider prediction to be hopeless;

species, population and ecosystem responses to environ-

mental change are often highly complex, nonlinear and

perhaps computationally irreducible (Beckage, Gross &

Kauffman 2011). A more insidious reason may be that

ecologists conflate prediction and explanation (Shmueli

2010); it is often assumed that a highly explanatory model

will also be a good predictive model. This is not strictly the

case. Even when the causal mechanisms of a process are

identified and estimated well enough by an approximating

model (M), a model other than M might be preferable for

prediction (Shmueli 2010; Gelman, Hwang & Vehtari

2014). Lastly, ecologists may be concerned that predictive

modelling lacks the ability to provide explanation of

underlying processes. This is also not strictly true. While

predictive modelling can be done without predictors based

on clear motivating hypotheses (due to Simpson’s Paradox,

Simpson 1951; Pearl 2014), doing so will likely lead to a

more robust generalizable model, as well as provide

explanatory power (Ashley, Granger & Schmalensee 1980).

Comparing models by their out-of-sample predictive per-

formance is often considered the very best way for investi-

gating support of hypotheses (Kaplan 1964; Ashley,

Granger & Schmalensee 1980; Hooten & Hobbs 2014).

We are interested in developing a predictive modelling

framework that links correlated climate variables to

migratory animal population vital rates. Specifically, we

focus on developing a generalizable model that links

drought across multiple temporal scales to measures of

juvenile (<1 year old) sandhill crane (Grus canadensis)

recruitment in the Rocky Mountains. Exploring how

climate affects crane recruitment is important in under-

standing future crane population dynamics, especially

when considering climate change. Secondly, by taking a

predictive approach, novel climate scenarios can easily be

explored to help inform managers about habitat or har-

vest decisions or be integrated into a formal decision

framework. Lastly, knowledge of how climate affects

crane breeding productivity in the Rocky Mountains

could also be informative to other migratory, ground-

nesting birds that breed in similar wetland habitats,

including shorebirds, wading birds and waterfowl (Austin

& Pyle 2004).
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Sandhill cranes are a long-lived North American bird

and have the lowest annual recruitment of any harvested

game bird in North America (Drewien, Brown & Kendall

1995). Typically, cranes do not breed until several years

of age, after which they produce two eggs in a single

clutch per year, but generally only one chick survives to

fledging (see Gerber et al., 2014). Re-nesting can occur if

the first nesting attempt fails early in the incubation per-

iod, but multiple successful clutches per year have not

been observed. We are specifically focused on the Rocky

Mountain Population (RMP), consisting of a single sub-

species (G. c. tabida), which migrate annually (Fig. 1).

Cranes breed during the summer within palustrine and

riparian wetlands throughout the central Rocky Moun-

tains, along with other species, including the Canada

Goose (Branta canadensis), Eared Grebe (Podiceps nigri-

collis), Mallard (Anas platyrhynchos), American Avocet

(Recurvirostra americana), Long-billed Curlew (Numenius

americanus) and Virginia Rail (Rallus limicola; Austin &

Pyle 2004). In the fall and spring during migration, birds

stop over in the San Luis Valley (SLV) in central south-

ern Colorado, while wintering takes place primarily in

the Rio Grande Valley of New Mexico (Drewien &

Bizeau 1974). A survival analysis of RMP cranes has

revealed low temporal variation in adult survival (Drew-

ien, R.C., unpublished data), suggesting recruitment may

be a driver of RMP dynamics (Sæther & Bakke 2000).

Following previous findings of a negative trend in

recruitment during a period of drought (Drewien, Brown

& Kendall 1995), we hypothesize that drought within the

RMP breeding range limits the availability of suitable

wetlands for nesting, which negatively affects annual

recruitment. We define drought as a combination of mete-

orological and hydrological processes that lead to a ‘per-

iod of abnormally dry weather sufficiently prolonged for

the lack of precipitation to cause a serious hydrological

imbalance’ (Heim 2002). As with many species of water-

fowl, sandhill cranes almost exclusively nest in wetlands

and have high site fidelity that may limit the availability

of potential wetlands for nesting (see Gerber et al., 2014).

Regional drying of wetlands due to drought is likely to

affect recruitment in two ways: (1) reduce the proportion

of the population that attempts nesting and (2) reduce

nest success for those that do nest. Water depth around

nests has been shown to be an important factor in nesting

success, where deeper water is thought to inhibit terres-

trial predators from accessing nests (Austin, Henry & Ball

2007; McWethy & Austin 2009).

We also hypothesize that cold temperatures and snow-

pack during the post-hatching and colt stage (June–
August) will reduce survival between hatching and arrival

at the SLV. Sandhill cranes are nidifugous, begin feeding

within 24 h of hatching, and are brooded for up to

3 weeks (see Gerber et al., 2014). Cold weather during the

post-brooding stage could be fatal or may limit develop-

mental growth due to increased thermoregulatory

demands. Secondly, cold weather is likely to limit the

availability of insect prey, which are an important

resource for chicks/colts in obtaining necessary protein

and to increase weight. Cranes that grow slowly during

the colt stage are known to have a lower probability of

surviving until 6 months of age (Drewien, R.C., unpub-

lished data). Lastly, a deeper snowpack in summer may

inhibit nesting or indicate a mismatch in timing of run-off

and recharging of wetlands during the crane nesting sea-

son.

To consider our hypotheses in a modelling framework,

we need predictor variables, which commonly in ecologi-

cal and climate studies are collinear. This creates certain

challenges in fitting many types of models and can pre-

vent accurate measures of parameters and their uncer-

tainty. We take an approach that can accommodate these

challenges. We highlight a predictive modelling approach

using statistical regularization to achieve a generaliz-

able model using a relatively large set of possibly collin-

ear predictors, motivated from ecological hypotheses.

Statistical regularization is a broad concept that includes

model selection and the idea of parsimony in model per-

formance (Bickel & Li 2006; Hooten & Hobbs 2014). We

specifically are interested in Bayesian ridge regression

(Hoerl & Kennard 1970) and least absolute shrinkage

and selection operator (LASSO; Tibshirani 1996). Ridge

regression and LASSO provide a rigorous approach to

Bayesian model selection and prediction (Hooten &

Hobbs 2014). Each approach regularizes parameters

based on out-of-sample performance, but they penalize

model complexity differently. Most importantly, LASSO

has variable selection properties and can remove effects

of predictors by allowing them to be zero, which gives

Fig. 1. Seasonal distribution of the sandhill crane Rocky Moun-

tain population. The major stopover for spring and fall migrants

is the San Luis Valley of southern Colorado, where crane biolo-

gists have conducted juvenile recruitment surveys since 1972

(Recruitment Survey). Juveniles are reared in the central Rocky

Mountains (Recruitment Process). The regions within the breed-

ing area indicate NOAA climate divisions.
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the optimal model an additional amount of interpretabil-

ity (Hastie, Tibshirani & Friedman 2009). Our objectives

are to (1) develop a predictive modelling framework for

linking climate effects to migratory animal populations

using the Bayesian LASSO and ridge regression tech-

niques, (2) identify an optimal out-of-sample (via cross-

validation) predictive model of RMP juvenile recruitment

(i.e. proportion of total population) and compare it to an

explanatory model, (3) formally evaluate ecological

hypotheses concerning climate effects on RMP juvenile

recruitment and (4) provide predictions of recruitment

across a range of climate scenarios to inform future man-

agement decisions.

Materials and methods

recruitment monitoring

Starting in 1972, an annual survey of juvenile recruitment has

been conducted in the RMP during the fall stopover at the SLV

(Brown 2013); the survey has been conducted consistently by the

same crane biologists (RCD or W. Brown) in mid-late October

when most of the population is present (Drewien, Brown & Ken-

dall 1995). The survey covers the entire distribution of cranes

within the SLV where birds are assessed to subspecies and age

group based on morphological characteristics. During this time,

juvenile cranes can be distinguished from adults, but these differ-

ences typically disappear by the following summer and thus only

allow two age classes to be identified (Drewien, Brown & Kendall

1995).

Biologists sampled cranes by observing flocks at roost, diurnal

feeding and midday loafing sites. Sites were only visited once dur-

ing the 3- to 6-day survey. A flock was defined as an aggregate of

cranes separated from others by >50 m. Flocks of all sizes were

sampled to minimize bias associated with the disproportional

number of juveniles that occur in smaller-sized flocks (Drewien,

Brown & Kendall 1995). Smaller flocks are generally not difficult

to observe in the SLV, and thus, under-detection is not a concern

(see Supporting Information). Large flocks (>300 individuals)

were spot-sampled (10–25 birds) at intervals along random zigzag

lines in both the perimeter and interior of the group to avoid bias

due to family groups concentrating on the edges of large flocks.

Between 1972 and 2013, an average of 5518 cranes were sampled

each year (range, 1997–8318, Table S1, Supporting information).

The recruitment estimate is a function of several biological and

ecological processes, including the proportion of the population

that attempts breeding, clutch size, nesting success and survival

from chick to the fall migration stopover at the SLV.

predictors for hypotheses

Drought

Measuring drought is difficult. No consensus exists on opera-

tional definitions and the complexity of the spatial and temporal

climate mechanisms that make up a drought are challenging to

capture. This lack of consensus led to the development of a mul-

titude of drought indices (Heim 2002). Two popular indices that

are consistent with our interpretation of drought are included in

separate models: the Palmer drought indices (MP , Mishra &

Singh 2010) and the standardized precipitation–evapotranspira-

tion indices (SPEI; MSP ; Vicente-Serrano et al. 2010a). The Pal-

mer indices are the most widely used and readily available indices

of drought (Mishra & Singh 2010). They account for precipita-

tion, evapotranspiration and capacity for soils to hold moisture.

The SPEI is a difference equation of precipitation and potential

evapotranspiration that is measured at sequential temporal scales,

making it applicable to multiple hydrological processes that influ-

ence drought (i.e. river discharge from headwaters, reservoir stor-

age and groundwater storage; Vicente-Serrano et al. 2010a).

We include three types of Palmer drought index for MP : (1)
the Palmer drought severity index (PDSI), (2) the Palmer hydro-

logical drought index (PHDI) and (3) the Palmer drought Z

index (PDZI). All indices are unitless, estimated monthly, and

generally range from �6 to 6, where positive values indicate wet

conditions and negative values dry conditions (0�00–0�49 are near

normal events, 0�50–0�99 are incipient, 1�00–1�99 are mild, 2�00–
2�99 are moderate, 3�00–3�99 are severe, and 4�00–6�00 are

extreme). PDSI measures meteorological drought over a 12- to

18-month time period (Vicente-Serrano, Beguera & L�opez-

Moreno 2010b); PHDI is a hydrological measure of water supply

that operates on time-scales longer than PDSI. PDSI and PHDI

are insensitive to temporary drought relief and are thus slow to

change. Therefore, for both PDSI and PHDI we include only a

single annual value in MP (April). PDZI is a short-time scale

measure of monthly drought with no influence from previous

months. Thus, PDZI can capture temporary drought relief from

precipitation, that may recharge wetlands, that is not captured in

the longer time-scale drought indices. We include monthly PDZI

from pre-nesting through nesting and into the colt stage (April–

July).

A number of criticisms have been made of the Palmer indices

(Heim 2002; Mishra & Singh 2010), which led to also investigat-

ing the SPEI. Because we are interested in drought at multiple

temporal scales, we include several indices in MSP , with measures

of SPEI on short- (1 month, April–July), medium- (12 months,

April) and long-term scales (24, 36 and 48 months, April). SPEI

is unitless and generally ranges from -3 to 3, where positive val-

ues indicate wet conditions and negative values dry conditions

(0�00–0�39 are near normal events, 0�50–0�70 are abnormal, 0�80–
1�20 are moderate, 1�30–1�50 are severe, 1�60–1�90 are extreme,

and 2�00–3�00 are exceptional).

A shortcoming of all drought indices is that they ignore snow-

pack and subsequent spring/summer run-off, which is likely to

influence wetland water levels used by RMP cranes. As such, we

explicitly incorporate snowpack using measurements of maximum

snow depth (MXSD) from 30 Cooperative Observer Network sta-

tions (COOP) chosen throughout the breeding range that (1) are

located in areas representative of where cranes nest (e.g. elevation

between 1500 and 3500 m) and (2) continuous data are available

from 1972 to 2013. We include MXSD for March and April in

both models, where higher values are hypothesized to be benefi-

cial in recharging wetlands during spring runoff.

Cold weather

To incorporate our summer cold weather hypotheses into both

models, predictors of the number of days below freezing in a

given month (DT32; measurements from COOP) in May, June,

July and August are included. MXSD is included for months

with snow (May and June).
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Spatially explicit predictors

Since the recruitment survey is conducted during migration, spa-

tially explicit knowledge of recruitment by state or region within

the breeding area is unavailable; thus, inference is for the entire

RMP. However, regional variation in weather/drought could

affect local breeding aggregations disproportionately. In addition,

the RMP is not evenly distributed within its breeding range (Fig.

S1, Supporting information), and thus, regional climate effects

will have disproportional impact on the total recruitment depend-

ing on the proportion of the breeding population exposed to the

regional climate. We investigated the within-year spatial variabil-

ity in drought indices across the RMP breeding range using the

climate divisions defined by NOAA and found considerable vari-

ation (see Fig. S2, Supporting information), which we attempt to

accommodate.

Four weighting strategies (wt, see Statistical Model) are applied

to the predictors of both models (MP;MSP), which are com-

pared by their predictive performance. First, M�1 predictors are

weighted uniformly across all years by the long-run average pro-

portion of the annual RMP pre-migratory fall survey count

within each climate region; this count covers the known staging

grounds (Thorpe, Donnelly & Collins 2013) and has been in

operation since 1995 (Kruse, Dubovsky & Cooper 2014). Second,

M�2 predictors are weighted by the proportional size of each cli-

mate region within the breeding area and thus assumes larger

areas have more breeding cranes than smaller areas. Third, M�3
predictors are weighted equally across all climate divisions in

each year. Fourth, M�4 predictors are weighted by the RMP fall

count by year; for years prior to 1995, we calculate a climate

region weight by the average proportion of cranes over the first

5 years of the survey.

In total, 14 (MP) and 16 (MSP) predictor variables are consid-

ered that we hypothesize are related to the realized climate mech-

anisms that affect sandhill crane recruitment (Table 1). However,

the climate and weather variables are at least partially and poten-

tially strongly correlated. Rather than remove collinear variables,

which is often done in explanatory modelling (a form of variable

selection prior to formal model selection), we see potential value

in each for predicting recruitment and take a modelling approach

that can accommodate the mathematical difficulties of collinear

variables. Palmer indices and weather variables (MXSD and

DT32) are available from NOAA (http://www.ncdc.noaa.gov/),

and SPEI is available from CSIC (http://sac.csic.es/spei/

index.html).

statistical regularization and model fitt ing

Statistical regularization

Statistical regularization seeks to optimize the generalizability of

a model by trading off bias and variance by constraining model

complexity, such that there is a decrease in variance for a smaller

gain in bias. First, a criterion to optimize needs to be chosen

that combines model fit (e.g. model deviance) or conversely, lack

of fit (e.g. squared prediction error), with a weighted measure of

model complexity (criterion = model fit + k 9 model complexity;

Reineking & Schr€oder 2006); the parameter k provides the

weighting or regularization that controls the relative importance

(i.e. exchange rate) of model fit and complexity. Model fit can be

any loss function, which measures the discrepancy between

observations and within- or out-of-sample model predictions.

Preferably, this function has the necessary characteristics (local

and proper) that guarantees an honest evaluation for the chosen

model and data (Gelman, Hwang & Vehtari 2014). For linear

models, model complexity is often measured by the number of

estimated parameters (P; i.e. degrees of freedom) and can be gen-

eralized to include the magnitude of parameter estimates (b) asPP
p¼ 1 jbijq, when q>0 (Reineking & Schr€oder 2006; Fig. S3, Sup-

porting information). The value of q has a large effect on the

measure of model complexity and the behaviour it imposes on

estimates and model performance for different values of k (see

Discussion; Hastie, Tibshirani & Friedman 2009). Two special

cases that have been studied extensively are q = 1 and q = 2,

which correspond to LASSO and ridge regression, respectively.

Both LASSO and ridge have likelihood and Bayesian interpreta-

tions. In a Bayesian context, choosing how model complexity is

controlled can equivalently be defined via the type of prior distri-

bution (prior) that is chosen for each bi, where LASSO (q = 1)

is achieved using the Laplace distribution and ridge (q = 2) is

achieved using the normal distribution (Hastie, Tibshirani &

Friedman 2009). The magnitude of the prior ‘regulating’ the

parameter estimates is controlled by k as part of the prior vari-

ance (see ’Statistical Model’ for how k is used in the prior). For

an explicit link between constrained optimization in the likeli-

hood paradigm (q = 1, LASSO and q = 2, ridge) and prior speci-

fication in the Bayesian paradigm (Laplace Prior, LASSO and

Normal Prior, ridge), see Hoerl & Kennard (1970) and Tibshira-

ni (1996).

Table 1. Ecological hypotheses about the direction of effect of

climate predictors on sandhill crane recruitment. Models included

either Palmer drought indices (MP) or standardized precipitation

–evapotranspiration indices (SPEI, MSP)

Time

Scale

(months)

MSP

Predictors*

MP

Predictors

Hypothesized

effect on

recruitment

Short(1) SPEI1

(April–July)
PDZI

(April–July)
Positive**

Short(1) MXSD

(March, April)

MXSD

(March, April)

Positive

Short(1) DT32 &

MXSD (May)

DT32 &

MXSD (May)

Negative

Short(1) DT32

(June–August)

& MXSD

(June)

DT32

(June–August)

& MXSD

(June)

Negative

Medium(12) SPEI12 (April) – Positive

Long(>12) – PHDI (April) Positive

Long(12–18) – PDSI (April) Positive

Long(24) SPEI24 (April) – Positive

Long(36) SPEI36 (April) – Positive

Long(48) SPEI48 (April) – Positive

*MXSD = maximum snow depth, DT32 = number of freezing

days, PDSI = Palmer drought severity index, PDZI = Palmer

drought Z index, PHDI = Palmer hydrological drought index.

The number following SPEI indicates the time scale and the

parentheses following a predictor variable indicate the month(s)

it pertains to.

**Positive values of drought indicate wetter years; thus, a positive

effect on recruitment means that increasing values of a drought

index leads to higher recruitment.

Published 2015. This article is a U.S. Government work and is in the public domain in the USA, Journal of Animal Ecology

Predicting climate effects on migratory animals 5

http://www.ncdc.noaa.gov/
http://sac.csic.es/spei/index.html
http://sac.csic.es/spei/index.html


Choosing a loss function and measure of model complexity will

depend on a study’s objectives and assumptions of the structure

of the data and predictors (Reineking & Schr€oder 2006). Because

we are interested in developing a generalizable model that is

appropriate for predicting outside of the sample space, we chose

to find an optimal value of k based on an out-of-sample log pre-

dictive score (Gelman, Hwang & Vehtari 2014; equation pre-

sented in ’Statistical model’). In doing so, a continuous model

selection is effectively performed via regularization to optimize

predictive accuracy.

Statistical model

A Bayesian binary regression model was developed to provide

inference (Fig. 2). The observation process is the number of juve-

niles observed (yt) from the total number of cranes assessed by

age (Nt) from year t = 1,2,. . .,T. The proportion of juveniles (pt)

is linked to scaled and centred predictor variables (P in total for

Q climate regions) from the breeding area for each year t. Predic-

tors are defined in a P9Q matrix (Xt) that is weighted by a Q91

vector (wt, which is different for models M�1�4), to estimate a

P91 vector of coefficients (b). We evaluate alternative regulators

(k) by out-of-sample cross-validation, in which coefficients are

shrunk towards zero using the prior as a constraint; the intercept

(a0) is not regularized and given a relatively uninformative prior

(Fig. 2). For ridge regression, the exchangeable prior for each

parameter is defined as the normal distribution (bp �Nð0; s2Þ,
where the variance s2 ¼ 1

k), while a Laplace or double-exponential

distribution (bp �Lð0; s2Þ) is used to specify the LASSO. The

Laplace distribution is more pointed at the mean than the normal

distribution and has heavier tails (Fig. S4, Supporting informa-

tion). A random effect (g) is also included to accommodate addi-

tional process uncertainty for annual variation that is not

explained by our predictors.

For each model and regularization method, a search is per-

formed for the optimal value of k using out-of-sample cross-vali-

dation, in which a portion of the data is left out from the model

(yhold), while the rest (ytrain) is used for estimation of unknown

parameters. This portion of the data that is not observed by the

model (yhold) and thus does not belong to the sample being used

to estimate parameters is applied to evaluate the predictive accu-

racy of the model. We use a yhold of length n = 1, 2, 3 and 6

(CV1, CV2, CV3, CV6, respectively) to evaluate the stability of

small sample cross-validation in selecting k. The data left out as

a group are chosen randomly. We consider 100 evenly spaced

regulators (ridge: k 2 [exp(-5), exp(15)]; LASSO: k 2 [exp(0),

exp(20)]). For leave-one-out cross-validation (CV1), the out-of-

sample predictive fit is calculated as the log pointwise predictive

density (lppd) for a given k across all Markov chain Monte Carlo

(MCMC) samples (post-burn-in) from s = 1,2,. . .,S and all hold

outs of data from i = 1,2,. . .,n, where h ¼ ½a0;b;r2�:

lppdCV1 ¼
Xn
i¼ 1

loge

Z
½yi;holdjh�½hjytrain�dh; eqn 1

and computed as,

Xn
i¼ 1

loge
1

S

XS
s¼ 1

p yi;holdjhis
� � !

: eqn 2

We consider the k value with the highest E[lppd] as the regular-

ization parameter that achieves the best prediction, and we con-

sider the model (MSP1�4;MP1�4) with the highest E[lppd] as our

best predictive model. We fit all models using MCMC methods

by sampling from full-conditional distributions using the R Pro-

gramming Language (2014); 500 000 MCMC samples were used

with a burn-in of 100 000 samples. Posterior convergence was

primarily assessed graphically. Additional information on apply-

ing statistical regularization and CV with the lppd in Bayesian

modelling can be found in the Supporting Information, including

R code.

prediction from an explanatory model

We compare the E[lppd] of our best model chosen using cross-

validation for LASSO and ridge regression (MSP1�4;MP1�4) with

a model developed following an explanatory modelling approach.

The explanatory model includes only a subset of predictors; col-

linear predictors are removed when pairwise correlation coeffi-

cients between predictors (|r|) are >0�28 (Graham 2003) and no

regularization is performed. This is the most common approach

to remove collinear variables (Graham 2003). We also use the full

correlation matrix (R) to investigate collinearity by taking its

determinant (|R|) as well as calculate the condition number (CN).

The |R| is a summary of all r, such that if no correlation exists,

this value will be 1�0, and otherwise it will be <1�0, with worse

collinearity being present as the value approaches zero. The CN

is the ratio of the largest to smallest nonzero singular value of

the predictor matrix ( Xtwtð ÞT), where the predictors all have a

mean of zero and a standard deviation of one. Multicollinearity

becomes an issue in estimating parameters when the CN > 5�4
(Lazaridis 2007).

ecological effects and prediction

We evaluate our ecological hypotheses by summarizing the pos-

terior distribution of our coefficients of the optimal predictive

model as either P(bp [ 0jy) for those effects we consider to have

a positive effect on recruitment and P(bp\0jy) for those predic-

Fig. 2. Regularized Bayesian binary regres-

sion model used to identify a generalizable

predictive model of sandhill crane recruit-

ment based on climate effects; shown with

the prior specification for ridge regression

and least absolute shrinkage and selection

operator, which act to control model com-

plexity. Note, we are specifying variances,

rather than precisions.
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tors that have a negative effect (Table 1); predictors that have lit-

tle effect on recruitment will have probabilities near 0�5. We also

investigate variability in juvenile recruitment by predicting

recruitment from our best model under a variety of climate sce-

narios.

Results

The best out-of-sample predictive model for M�1�4 was

found to be similar for ridge and LASSO, but with ridge

consistently performing slightly better. Overall, there was

little difference in predictive accuracy between MP2�4 and

MSP1�4, while MP1 was clearly superior (Fig. 3). Across

all models and both regularization methods, CV1-CV3

were mostly consistent in selecting the same optimal k,
while CV6 tended to select a slightly larger regulator

value (e.g. Fig. S5, Supporting information). The differ-

ences in selected regulators have a small effect on the

expected predictive accuracy (E[lppd]), but are clearly not

different when considering the complete posterior distri-

bution of lppd (Fig. S6, Supporting information). Across

all weighting strategies, the lppd was found to be optimal

at different values of k for ridge regression and LASSO

due to their different forms of regularization. However,

functionally k occurred at similar values of the regularized

coefficients (e.g. Fig. S7, Supporting information), which

led to similar conclusions about our ecological hypotheses

(Table 2). For MP1, the optimal k using ridge regression

improved the predictive accuracy by 21�3% compared to

a non-regularized model (diffuse prior), while LASSO

improved by 20�8%.

Predictors of all our models were found to be consider-

ably collinear, including the best performing model,

(MP1 : mean, SD and range of r was 0�26, 0�27, -0.31 to

0.96, respectively). Additionally, the |R| was 0�00004, and

the CN was 33�06. After removing collinear predictors,

the explanatory model MP1�Explanatory had a total of five

predictors (PDZI-May, DT32-May–July–August and

MXSD-June) that were considerably less collinear

(MP1�Explanatory : mean, SD and range of r was �0�01,
0�16, -0.21 to 0.22, respectively). The |R| was 0�77, and

the CN was 2�16. However, there was also a loss of pre-

dictive accuracy from the explanatory model, with MP1

fit using ridge and LASSO being � 37% more accurate

than MP1�Explanatory.

For more than four decades, the annual juvenile

recruitment varied considerably while remaining consis-

tently low (0�034–0�120 [range, Brown 2013, Fig. S8, Sup-

porting information). We found the majority of our

ecological hypotheses regarding the effect of drought and

weather on juvenile recruitment to be supported using

either LASSO or ridge for the best predictive model, MP1

(Table 2). Contrary to our hypotheses, there was strong

support for a negative influence of PDZI-April and posi-

tive support of DT32-May on recruitment. There was also

no significant effect of PDZI-July. Two of the drought

indices (PDZI-May–July) were highly sensitive to the

weighting strategy used with at least a 0�1 change in prob-

ability of the hypothesis (Table S2, Supporting informa-

tion); we are therefore less confident about inferring the

importance of these predictors. We found similar general

support of our hypotheses using the SPEI drought indices

MSP1�4, but more variability in support across weighting

strategies (Table S3, Supporting information).

Using our best model (MP1), we predicted juvenile

recruitment under a range of climate scenarios. We found

short-term (PDZI) and long-term drought (PDSI, PHDI)

to affect juvenile sandhill crane recruitment differently.

Our model suggests that the alleviation of drought by the

Fig. 3. Posterior distributions of the opti-

mal log pointwise predictive density from

models using Palmer drought indices and

SPEI (standardized precipitation–evapo-
transpiration indices), spatially weighted

by different strategies (MP1�4;MSP1�4,

respectively); thick lines indicate the

model was fit using least absolute shrink-

age and selection operator and narrow

lines indicate ridge.
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increasing of short-term drought indices can positively

affect juvenile recruitment, but not as much compared to

alleviation of long-term drought (Fig. 4). We also found

that the number of freezing days in the summer months

(June, July and August) have a less pronounced effect on

juvenile recruitment than drought, but one that is consis-

tently negative (Fig. 5). Investigating the timing of maxi-

mum snowpack across spring and summer revealed strong

effects on sandhill crane recruitment, with the best sce-

nario for crane production being high snowpack in the

spring that is drastically reduced by the summer months

(Fig. 6).

Discussion

predictions, vital rates and harvest
decis ions

We demonstrated a predictive modelling framework that

links ecological hypotheses of correlated climate mecha-

nisms to a migratory population’s vital rates, while over-

coming common data and modelling issues. Most

importantly, we did not limit our investigation of climate

effects to a single value of drought, but instead allowed

the model to evaluate a set of numerous temporally scaled

measures of drought that were considered a priori to

be candidate predictors of recruitment. Understanding

whether climate drives variation in vital rates will often

depend on evaluating temporally correlated mechanisms.

By doing so, we were able to improve predictions and bet-

ter understand how short- and long-term drought propor-

tionally impact cranes.

In the RMP, juvenile recruitment may be especially

important in understanding crane population dynamics.

While adult survival is known to have the greatest poten-

tial to affect population change (i.e. more elastic and

sensitive), observed temporal variation is often low in

long-lived birds (Sæther & Bakke 2000). In contrast, juve-

nile recruitment and survival may have a lower potential

to affect population change, but greater observed influ-

ence on long-lived birds due to high temporal variation

(Sæther & Bakke 2000). For the RMP, adult survival has

been found to be stable over a 23-year period (Drewien,

R.C., unpublished data), while recruitment has high tem-

poral variation (Fig. S8, Supporting information, Brown

2013). Our best predictive model suggests that this varia-

tion is at least partly due to drought (short- and long-

term) as well as spring/summer weather in the Rocky

Mountains. Climate can be said to exert a population lim-

iting effect on the RMP, mediated through breeding habi-

tat constraints. Specifically, in periods of drought,

breeding cranes are limited in the quality of nesting habi-

tat and choose not to nest and/or are less successful at

producing young that make it to their main migratory

stopover when they do nest. These findings are likely not

unique to sandhill cranes, but apply more generally to

migratory, ground-nesting birds that also rely on palus-

trine and riparian wetlands for breeding.

Exploring variation in predictors (e.g. Figs 4–6) can

lead to important general findings of how future climate

scenarios may impact RMP sandhill crane recruitment,

which decision-makers may find useful. Most important is

that the drought in the central Rocky Mountains is gener-

ally expected to increase in severity (Dai 2011), likely due

Fig. 4. Variation in predicted juvenile sandhill crane recruitment

across values of long-term (LTD) and short-term drought from

an optimal out-of-sample predictive model, fit by ridge (MP1).

Weather predictors (maximum snow depth and the number of

freezing days within a month) are held constant at their mean.

The uncertainty is shaded in proportion to the posterior distribu-

tion and the lines are 95% credible intervals.

Table 2. Ecological hypotheses, predictor variables and evidence

of the relationship from the optimal out-of-sample predictive

model, MP1

Predictor

Hypothesized

effect on

recruitment

Ridge regression P

(Hypothesis|

Data)

LASSO P

(Hypothesis|

Data)

PDSI

- April

Positive 1�00 1�00

PHDI

- April

Positive 1�00 1�00

PDZI

- April

Positive 0�01 0�01

- May Positive 0�98 0�97
- June Positive 1�00 1�00
- July Positive 0�31 0�40
DT32

- May

Negative 0�00 0�00

- June Negative 1�00 1�00
- July Negative 1�00 1�00
- August Negative 1�00 1�00
MXSD

- March

Positive 1�00 1�00

- April Positive 1�00 1�00
- May Negative 1�00 1�00
- June Negative 1�00 1�00
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to increased temperatures and decreased spring snow

cover (McKelvey et al. 2011). The timing of flows in the

Rocky Mountains is also expected to occur earlier in the

spring (Rood et al. 2008) with higher flows in the winter

and substantially reduced flows in the summer. These

changes may eventually cause a mismatch in timing of

wetland recharge and water needs of nesting cranes,

unless their migration chronology is sufficiently plastic to

adapt. Our predictions suggest that future annual recruit-

ment is likely to be lower than currently observed, thus

limiting population growth more than in the past, unless

survival rates could compensate. Limited population

growth could be detrimental to the long-term stability of

the RMP, as adult cranes have a natural mortality of �
6%, which could be exceeded by harvest mortality under

an increasing harvest rate (Drewien, R.C., unpublished

data). Even relatively low harvest rates coupled with low

recruitment could have an effect on the population’s tra-

jectory. If the population began to decline, the low

expected recruitment coupled with delayed breeding

would make for a very slow recovery.

modelling and data limitations and concerns

Some caution in using our model directly in harvest

decisions is warranted. First, the juveniles we survey are

those that survived through fledging and early sport

hunting mortality and successfully migrated to the SLV.

Thus, the recruitment we observe is likely lower than

would be at the breeding area. Annual variation in the

differential survival of juvenile and adults from the

breeding grounds to the SLV may mask true variation

in our estimates of recruitment to the population at the

fall staging area in any given year. Juvenile and adult

survival appear not to be highly temporally variable

(Drewien, R.C., unpublished data); however, juvenile

survival during this period is dependent on their body

condition prior to migration (Drewien, R.C., unpub-

lished data). Such variation across cohorts could occur

as a result of changes in food availability, which could

be exacerbated by environmental changes resulting from

a changing climate. Climate predictors should capture

the variation in survival effects on recruitment due to

Fig. 5. Variation in predicted juvenile sandhill crane recruitment across the number of freezing days during the breeding season from an

optimal out-of-sample predictive model, fit by ridge (MP1). Drought indices are held constant at their mean. The uncertainty is shaded

in proportion to the posterior predictive distribution and the lines are 95% credible intervals.

Fig. 6. Variation in predicted juvenile

sandhill crane recruitment across alterna-

tive scenarios of maximum snow depth

during the spring (March–April) and sum-

mer months (May–August) from an opti-

mal out-of-sample predictive model, fit by

ridge (MP1). The number of freezing days

within a month and drought predictors

are held constant at their mean. SD indi-

cates standard deviation such that �2SD

is 2 SD below the mean predictor value.
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climate effects, but not so for other temporally varying

factors. Thus, this may not be a systemic issue but

affect only a few years.

Secondly, the scale of monitoring recruitment has

important implications of how we incorporate climate

variables for the breeding area. Monitoring recruitment

at the SLV has clear benefits in increasing the likeli-

hood of obtaining a representative sample from the

entire RMP and is less financially burdensome than a

survey conducted over the entire breeding area. How-

ever, more informative measures of recruitment would

result from monitoring at a finer grain than that of

the entire RMP breeding area, because drought and

local weather conditions vary considerably at a finer

scale. Such trade-offs between sampling efficiency, scale

and grain are likely common in studies of widely dis-

persed populations. Because fine-scale estimates of

recruitment were not available, we used a modelling

framework to spatially weight climate variation at the

breeding area, based on relative abundance in migra-

tion staging areas, and then apply it to the popula-

tion-level measure of recruitment. This is challenging

because the distribution of the nesting cranes is

unknown and has likely shifted over time due to habi-

tat change, changing land practices, loss of wetlands

and increasing exurban development. It gives us hope

that we have generally captured the spatial variation

of climate on recruitment in the population as our best

predictive model used the annual pre-migratory counts

(MP1), but we did expect the time-varying weighted

model (MP4) to have more support. Perhaps, this was

because we have no information on the distribution of

cranes from 1972 to 1994.

Lastly, we have attempted to link drought with crane

recruitment, where we assume one effect of drought is the

reduction of wetland water levels, which increases a pred-

ator’s ability to locate nests. Predation risk to crane nests

is likely driven by predator abundance, activity and alter-

native prey availability (Austin, Henry & Ball 2007).

These are in turn influenced by a number of factors,

including land-use change and human activity, which

have varied spatially and temporally within the Rocky

Mountains over the last four decades. In the future, it

may be possible to incorporate land-use change into this

modelling framework. Work is currently underway by the

Intermountain West Joint Venture to quantify the magni-

tude and distribution of landscape change (Donnelly &

Vest 2006). However, this will not necessarily solve the

issue of spatio-temporal variation in predation risk, which

may remain imprecise over such a large area. A major

benefit of the land-use data could be the ability to weight

climate predictors by the availability of wetland habitats.

This may allow crane recruitment to be used as a general

index of overall wetland breeding productivity of certain

waterfowl, shorebirds and wading birds in the Rocky

Mountain region. However, this application would require

testing.

predict ion and model selection

We suggest the field of ecology could benefit from

increased application of formal predictive modelling. By

formal, we mean models trained by out-of-sample data

and measured by a truly predictive criterion that does not

depend on asymptotic properties (e.g. lppd), which will

help identify generalizable predictive models. This is often

considered the gold standard in discriminating among

hypotheses (Kaplan 1964; Ashley, Granger & Schmalensee

1980). In addition, this approach is ideal for predicting

system response over a range of realistic scenarios that

includes unobserved or even novel conditions, to help

decision-makers visualize possible outcomes of environ-

mental change. Lastly, hypotheses of ecological or climate

processes will often lead to a set of correlated variables,

which a predictive modelling approach can easily accom-

modate.

We contend that viewing model selection within the

domain of regularization is advantageous, because it opens

up the wide array of interesting statistical approaches to fit-

ting and comparing models (Hastie, Tibshirani & Friedman

2009; Hooten & Hobbs 2014). Regularization helps one to

think about measures of model complexity and whether

within-sample explanation or out-of-sample prediction is

preferred. There is no one-size-fits-all regularization

method; choosing an approach should be based on the

research or management issue of interest, the assumptions

of the structure of the data and the operating characteristics

of the method (Reineking & Schr€oder 2006). If predicting

beyond the current sample space is a priority, as it was here,

it is preferable to use an out-of-sample measure of model

fit, as it generalizes the model and helps guard against over-

fitting (Gelman, Hwang & Vehtari 2014). This is not to sug-

gest prediction is inappropriate when optimizing a model

based on within-sample fit, but if prediction is the goal,

out-of-sample predictive performance is known to be worse

(i.e. less accurate and/or precise) when fitting a model opti-

mized using within-sample fitting (Hastie, Tibshirani &

Friedman 2009). When there is sufficient data, the best

practice is to use true out-of-sample predictive fit where a

subset of the total data is completely left out and is never

used to fit the model, only to evaluate predictive accuracy;

otherwise, cross-validation as used here, which randomly

leaves out a portion of the data to evaluate predictive accu-

racy is a valid option (Hastie, Tibshirani & Friedman

2009).

Regularization is commonly discussed and applied in

ecological research, but mostly narrowly and focused in

the likelihood framework using variable subset selection

via information theoretics (IT, Burnham & Anderson

2002). The more general notion of statistical regulariza-

tion being used for model selection is more rarely dis-

cussed in the ecological literature (Hooten & Hobbs

2014). One of the widely applied IT criterion, Akaike’s

Information Criterion (AIC), can easily be understood in

the context of regularization, as AIC = �29Log-Likelihood
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+ k�PP
p¼ 1 jbijq, where q = 0 and k = 2. AIC is based

on minimizing within-sample expected prediction error

(Burnham & Anderson 2002; Hastie, Tibshirani & Fried-

man 2009). Recommendations of using AIC include com-

paring a small set of ecologically motivated models

(Burnham & Anderson 2002), which is ideal for an

explanatory modelling approach. However, because vari-

able selection is a discrete process (q = 0, predictor is

either in or out), it can be unstable and exhibit high vari-

ance when it comes to prediction, and thus often leads to

considerable predictive loss compared to continuous regu-

larization methods where the amount of regularization (k)
is data-driven (e.g. by cross-validation) rather than fixed

(Breiman 1996; Hastie, Tibshirani & Friedman 2009).

In this study, we applied the Bayesian LASSO and

ridge, as they are known to perform well under a wide

range of conditions, including, binary data, and especially

at small sample size, such as ours (Reineking & Schr€oder

2006). A key issue in modelling binary data is the known

overestimation of coefficients for small sample size, which

is compounded when the event of interest is rare (small

pt, low recruitment) and when interested in many predic-

tors (Makalic & Schmidt 2010); these issues commonly

lead to poor prediction, which regularization can amelio-

rate. For our crane data, LASSO and ridge performed

equally well in predictive accuracy and led to the same

ecological findings. The differences between the two in

their model specification are slight, but they have different

operating characteristics that were not clearly illustrative

in our study. Ridge is best when there are many nonzero

coefficients and when there is strong collinearity among

predictors, while LASSO operates best when there are

many coefficients close to or at zero with a few larger

coefficients and only some predictor collinearity (Tibshira-

ni 1996; Reineking & Schr€oder 2006; Friedman, Hastie &

Tibshirani 2010). For our analysis, if we had considered

additional variables that were less motivated by clear eco-

logical hypotheses and thus were more likely to be unre-

lated to recruitment, LASSO would have likely

outperformed ridge by removing these variables from the

optimal model; instead, the stronger collinearity among

our important predictors lead to ridge outperforming

LASSO.

Ecologists should consider their study goals and

examine the wide range of regularization methods and

their performance for their specific situation. We took a

Bayesian approach to regularization, which can easily

accommodate various sources of uncertainty, including

parametric uncertainty, directly in our measure of pre-

dictive accuracy. We see a high utility in regularization

specifically for meeting the increasing demands from

decision-makers for increased predictive modelling in

ecology. Further details on applying Bayesian model fit-

ting can be found in the Supporting Information; for

those interested in likelihood statistical regularization,

see the R package ‘glmnet’ (Friedman, Hastie & Tibsh-

irani 2010).
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Appendix S1. Additional details on NOAA climate regions, sand-

hill crane sampling, Bayesian model fitting, statistical regulariza-

tion, and cross validation.

Table S1. Annual survey data used to develop an optimal out-of-

sample predictive model of juvenile sandhill crane recruitment.

Table S2. Ecological hypotheses, predictor variables, and evidence

of the relationship (P(Hypothesis|Data)) of how drought (Palmer

indices) and weather predictors influence sandhill crane juvenile

recruitment.

Table S3. Ecological hypotheses, predictor variables, and evidence

of the relationship (P(Hypothesis|Data)) of how drought (SPEI)

and weather predictors infuence sandhill crane juvenile recruit-

ment.

Fig. S1. Animation of the proportion of the annual pre-migration

count of the Rocky Mountain population of sandhill cranes on

their staging areas (1992, 1995 to 2013); spatial units are NOAA

climate regions.

Fig. S2. Drought indices from 1972 to 2013 within the sandhill

crane Rocky Mountain Population breeding area (Idaho, Mon-

tana, Wyoming, Colorado, Utah); Top: the standardized precip-

itation evapotranspirtion index (SPEI). Bottom: the Palmer

Drought Severity Index (PDSI).

Fig. S3. Illustration of the continuous effect of model complexity

under different forms.

Fig. S4. Comparison of the Laplace and Normal distribution, used

to constrain model complexity in Bayesian regularization, where

prior specification of coefficients are equivalent to LASSO and

ridge regression, respectively.

Fig. S5. Out-of-sample cross validation (CV) log-predictive scores

(E[lppd]) under different amounts of training data (CV1, CV2,

CV3, CV6) for identifying an optimal regulator (k).

Fig. S6. Animation of the posterior distribution of the log

predictive score across a range of regulators (k); the thick black

line indicates the optimal or highest expected value.

Fig. S7. Trace plots of the standardized regression coefficients (E

[k]) when using ridge regression and LASSO.

Fig. S8. Observed variation in juvenile recruitment of the Rocky

Mountain Population of sandhill cranes from 1972 to 2013 during

migration at the San Luis Valley in southern Colorado.

Appendix S2. R code demonstrating the structure of how to carry

out statistical regularization, cross-validation, and calculations of

the lppd.
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