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Abstract Chronic wasting disease (CWD) is an infectious prion disease that affects
mule deer, along with other Cervids. It is a slow-developing, fatal disease which is rare
in the free-ranging deer population of Utah. We present a sex-structured, spatial model
for the spread of CWD over heterogeneous landscapes, incorporating both horizontal
and environmental transmission pathways. To connect the local movement of deer to
the regional spread of CWD, we use ecological diffusion with motility coefficients
estimated from mule deer movement data. Ecological diffusion allows for aggregation
of populations in desirable habitats and therefore allows for an interaction between
density dependent disease transmission and landscape structure. The major innovation
presented is use of homogenization to accelerate simulations of disease spread in
southeastern Utah, from the La Sal Mountains near Moab to the Abajo Mountains near
Monticello. The homogenized model provides accuracy while maintaining fidelity
to small-scale habitat effects on deer distribution, including differential aggregation
in land cover types with high residence times, with errors comparable to the order
parameter measuring separation of small and large scales (ε ≈ .01 in this case). We use
the averaged coefficients from the homogenized model to explore asymptotic invasion
speed and the impact of current population size on disease spread in southeastern Utah.
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1 Introduction

Chronic wasting disease (CWD) is an infectious prion disease that affects mule deer
(Odocoileus hemionus), as well as other members of the Cervidae family, namely
white-tailed deer (Odocoileus virginianus), elk (Cervus elaphus), and moose (Alces
alces shirasi) (Baeten et al. 2007). It is a rare, slowly-developing disease that is always
fatal, and infected mule deer may live 12–24 months before showing visible signs of the
disease (Williams 2005). The disease may be contracted by direct contact with infected
deer (Miller and Williams 2003), as well as by contact with contaminated environments
(Johnson et al. 2006). Prions shed into the environment through the feces, saliva, and
decaying carcasses of infected deer may remain infective for many years (Miller et al.
2004). The existence of both horizontal and environmental transmission pathways
may greatly affect the spread of CWD (Almberg et al. 2011).

Miller et al. (2008) have suggested that over decades CWD may affect local popu-
lation dynamics with possible long-term effects on ecosystems. Mathematical models
are critical tools in assessing the impact of CWD on deer populations and analyzing
different management strategies (Schauber and Woolf 2003). CWD has been modeled
in many different ways, including discrete-time deterministic models (Miller et al.
2000), individual-based models (Gross and Miller 2001), difference equation models
(Johns and Mehl 2006), and SI epidemic models (Miller et al. 2006; Wild et al. 2011).

Although these models have made important inroads to understanding disease
dynamics, a spatial model is necessary for predicting spread of an infectious disease
to new geographic regions (Smith et al. 2002), particularly considering the lingering
environmental footprint of CWD. Transmission of CWD is contingent on popula-
tion densities which reflect the heterogeneity of the environment, which can organize
spatial processes like disease spread (Bar-David et al. 2006; Real and Biek 2007).

For the most part, spatial models for CWD have been statistical. Conner and Miller
(2004) use cluster analysis and Farnsworth et al. (2006) use a Bayesian hierarchi-
cal model to study spatial spread in free-ranging mule deer populations in Colorado,
while Joly et al. (2006) use spatial analysis to study the spread of CWD in white-tailed
deer in Wisconsin. All of these approaches require a large body of data, which is not
available in areas where the disease is in its initial stages, such as Utah.

A deterministic, process-based model does not need the same amount of data to be
useful. Rates of movement can be inferred from measurements of healthy deer, and
transmission parameters estimated for other populations used in an appropriately con-
structed mechanistic model. One mechanism to introduce spread as a spatial process
involves diffusion. Diffusion was applied to epidemiology by Kendall (1965) and
has been used to model the spatial spread of diseases in several wildlife populations,
including rabies in fox (Kallen et al. 1985; Murray et al. 1986), foot and mouth disease
in feral pigs (Pech and McIlroy 1990), and conjunctivitis in house finches (Hosseini
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Homogenization, sex, and differential motility 371

et al. 2006). However, these models use constant diffusion coefficients, which imply
that animals move at the same rate through all habitat types. Additionally, these authors
used Fickian diffusion, of the form ∂u

∂t = ∇[D(x)∇u], which models the distribution of
organisms from high densities to low densities at a rate proportional to the density gra-
dient (Holmes et al. 1994). Since the diffusion equation reduces population gradients,
it eventually (and unrealistically) distributes organisms across all habitats equally.

On the other hand, ecological diffusion, represented by ∂u
∂t = ∇2[(μ(x)u], allows

for distinct population differences at habitat boundaries (Turchin 1998; Okubo and
Levin 2001; Ovaskainen 2008), reflecting the aggregation of organisms in desirable
habitats and their dispersal from undesirable ones. The variable motility coefficient,
μ(x), is inversely proportional to residence time (Turchin 1998). Population density
in an area increases as motility decreases, thereby parsimoniously allowing the envi-
ronment to condition disease transmission through aggregation. While it would be
possible to include more complicated mechanisms for population aggregation (advec-
tive preferences or landscape source/sink terms), there is a lack of data to parameterize
these terms in the case of Utah deer, as well as no need to add additional complications.

Although variable motility coefficients have been recognized as necessary to model
dispersal over heterogeneous landscapes they are often abandoned in practice. This
is chiefly due to the added mathematical complication and lack of data to determine
motility coefficients for all landcover types in a study area. Homogenization techniques
can aid in dealing with mathematical complication for numerical solutions (Garlick
et al. 2011), and advances in telemetry have enhanced data collection over diverse habi-
tats (Ostfeld et al. 2005). Homogenization is a technique for facilely accommodating
small scale variability in diffusion coefficients for large scale simulation (Dewhirst
and Lutscher 2009), using the method of multiple scales (Holmes 1995). ‘Homoge-
nized’ partial differential equations (PDEs) are determined as solvability conditions
for asymptotic expansions for PDE with rapidly-varying coefficients. To derive these
solvability conditions the original problem must usually be solved on fine scales,
which can be a barrier. Additionally, the technique depends on strict separation of
scales between small (patch to patch, i.e. the correlation length of landcover types,
generally tens of meters) and large (the distance over which patch-to-patch variabil-
ity changes, generally kilometers). If the solvability criteria can be determined, the
resulting homogenized equations operate on much broader scales and are orders of
magnitude more efficient to solve numerically. In epidemiology homogenization has
been used with Fickian diffusion to model the spread of feline leukemia (Fitzgibbon
et al. 2001) and dispersal of seeds (Powell and Zimmermann 2004) and with ecological
diffusion in an unstructured CWD model (Garlick et al. 2011).

In this paper we present a spatial, sex-structured model for the spread of CWD
in mule deer, accounting for disease-specific behaviors of male and female deer
separately through motility parameters and infection rates. Both deer-to-deer and
environment-to-deer transmission are included. We apply a homogenization procedure
for ecological diffusion (Garlick et al. 2011) to the system of equations to facilitate
numerical solution over a large domain, simulating the spread of CWD in Southeast
Utah. This homogenization procedure is strikingly simple when compared to similar
techniques for Fickian diffusion equations. The homogenized system not only provides
a multi-scale approach to disease spread, it also provides averaged coefficients that
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can be applied to predict invasion speed and the effect of population size on disease
spread, which can aid managers in decision-making.

2 Model for disease transmission and population movement

Deer behavior is dependent upon the season of the year. Female deer form matrilinear
groups that show strong fidelity to winter and summer ranges. Male deer also have
strong site fidelity but wander more, especially during breeding season when searching
for receptive females (Nicholson et al. 1997). Males interact with each other in com-
petition for females and males test females for receptiveness through extensive licking
(Kucera 1978). Thus, male breeding behavior may contribute to higher infection rates
for males (McFarlane 2007). Farnsworth et al. (2005) found CWD prevalence in males
to be much higher than in females. To incorporate the behavioral differences between
male and female deer, we develop a sex-structured model following the SI framework
of Anderson and May (1979), with the addition of environmental hazard and ecolog-
ical diffusion. Latency is not included; existence and duration of a latency period is
not established (Miller et al. 2006) and evidence suggests agent shedding occurs long
before clinical signs of CWD appear (Miller and Wild 2004).

The equations for susceptible deer are:

∂SF

∂t
= ∇2(μF SF ) − βF F SF IF − βM F SF IM − γF SF H + ΦF (SF , SM ) (1)

∂SM

∂t
= ∇2(μM SM ) − βF M SM IF − βM M SM IM − γM SM H + ΦM (SF , SM ), (2)

where S refers to the susceptible population density, I to the infected population
density, and H to the amount of infectious material in the environment. The subscripts
F and M refer to female and male deer respectively. The differential operator,∇2, is
the Laplacian, ∂2

∂x1
2 + ∂2

∂x2
2 . The motility coefficients μF and μM vary over space,

reflecting differences in movement patterns between males and females. We allow for
an infection rate for each of four types of interactions, females infecting other females,
βF F , males infecting females, βM F , males infecting other males, βM M , and females
infecting males, βF M . These rates vary with season: females infect other females at a
higher rate during the winter, than during the summer when they are fawning, males
infect females more on winter ranges, males infect males at a higher rate during the
summer and winter than during breeding season, and females infect males at a higher
rate during breeding season and winter than during the summer. The parameters γF

and γM are the rates at which susceptible females and males contract the disease from
the environment. The functions ΦF and ΦM contain appropriate birth and death terms
for susceptibles which are not needed in detail for our modeling approach, which will
use steady-state approximations for susceptible populations.

The equations for infected deer are:

∂ IF

∂t
= ∇2(μF IF ) + βF F SF IF + βM F SF IM + γF SF H − ωIF − φ IF (3)
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Table 1 The parameters for the CWD model and values used in the simulations

Parameter Description Value Source

μF , μM Motility coefficients See Table 2 Estimated

βF F , βM F ,
βF M , βM M

Direct transmission rates 8.767×10−5 to 9.315×10−5

density−1 day−1
Miller et al. (2006)

γF , γM Transmission rates from
contaminated environments

0.0022 mass−1 day−1 Miller et al. (2006)

ω Death rate from CWD 0.0013 day−1 Miller et al. (2006)

φ Cull rate 0 day−1 Assigned

αF , αM Rates at which prions are
excreted

0.00030411 mass
density−1 day−1

Miller et al. (2006)

αDF , αDM Rates at which infected
carcasses pollute the
environment

0.1 mass density−1 Assigned

δ Rate at which infectious
material leaves the
environment

0.007 day−1 Miller et al. (2006)

∂ IM

∂t
= ∇2(μM IM ) + βF M SM IF + βM M SM IM + γM SM H − ωIM − φ IM . (4)

The death rate for infectives, ω, includes death due to CWD. It may also be influenced
by the increased number of deaths of infected deer from predation (Wild et al. 2011)
and vehicle collisions (Krumm et al. 2005) over that of healthy deer. In Utah visibly
sick deer are euthanized and their carcasses removed. The parameter φ is the rate at
which this culling occurs (reporting of sick deer in Utah is a rare occurrence). The
total number of susceptible and infected deer is given by N = SF + SM + IF + IM .

The change over time of the amount of prions in the environment is modeled by a
DE for environmental hazard, H ,

∂ H

∂t
= αF IF + αM IM + αDFωIF + αDMωIM − δH. (5)

The parameters αF and αM are rates that feces and urine pollute the environment, while
αDF and αDM are rates that decaying carcasses pollute. The parameter δ is the rate at
which hazardous material leaves the environment, whether via deactivation (unknown
means) or being washed away or covered up by soil deposition. The parameters for
this model and the subsequent simulations are given in Table 1.

2.1 Rescaling to reduce number of free parameters

In Utah the number of infected deer is much smaller than the number of susceptible
deer, i.e. 0 < IF � SF , SM and 0 < IM � SF , SM , because the disease is rare
(UDWR 2012). Therefore, considering the initial density of susceptible deer to be
close to the density at carrying capacity (SF (0) + SM (0) = K ) and the initial density
of infected deer to be much smaller (IF (0) + IM (0) = ηK , 0 < η � 1) leads to
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the following scales: S̄F = SF
K , S̄M = SM

K , ĪF = IF
ηK , ĪM = IM

ηK , and H̄ = H
αDM ηK .

Rescaling time with t̄ = ωt and assuming
∣
∣∇2(μF S̄F )

∣
∣ ∼ ω gives:

∂ S̄F

∂ t̄
= 1

ω

[

∇2(μF S̄F ) + ΦF (S̄F ) − ηK S̄F
(

βF F ĪF − βM F ĪM − γFαDM H̄
)]

(6)

∂ S̄M

∂ t̄
= 1

ω

[

∇2(μM S̄M ) + ΦM (S̄M ) − ηK S̄M
(

βF M ĪF − βM M ĪM − γMαDM H̄
)]

.

(7)

Hunting and habitat management practices in Utah are aimed at reaching and main-
taining a population objective for mule deer, determined by wildlife managers (UDWR
2012) and given as a number of deer. Assuming the functions ΦF and ΦM contain
birth, death, and hunting rates such that a population level is maintained (i.e. Kβ

ω
∼ 1)

and neglecting the terms multiplied by the small parameter η, (6) and (7) become:

∂ S̄F

∂ t̄
= 1

ω
∇2(μF S̄F ) and

∂ S̄M

∂ t̄
= 1

ω
∇2(μM S̄M ), (8)

which have steady state solutions ŜF = CF
μF

and ŜM = CM
μM

respectively. The constants
CF and CM are proportional to the density at carrying capacity, K . The Utah Division
of Wildlife Resources (UDWR) expresses the population of deer at carrying capacity
as a target population in numbers of individuals, N . For our modeling purposes, we
need that carrying capacity expressed as a density of the number of individuals per

kilometer at carrying capacity, K , chosen such that
∫∫

A

(

ŜF + ŜM

)

d A = K A ≈ N .

Rescaling (3)–(5) and using ŜF and ŜM for the susceptible populations, our system
becomes:

∂ ĪF

∂ t̄
= 1

ω

[

∇2(μF ĪF ) +
(

βF F ŜF − ω−φ
)

ĪF + βM F ŜF ĪM + γFαDM ŜF H̄
]

, (9)

∂ ĪM

∂ t̄
= 1

ω

[

∇2(μM ĪM )+
(

βM M ŜM −ωI −φ
)

ĪM +βF M ŜM ĪF + +γMαDM ŜM H̄
]

,

(10)

and

∂ H̄

∂ t̄
= αF

αDMω
ĪF + αM

αDMω
ĪM + αDF

αDM
ĪF + ĪM − δ

ω
H̄ . (11)

Thus, the spread of CWD in the male and female populations is connected through
the environmental hazard, as well as the gender-specific steady-state population sizes
and infection rates. In fact, the steady-state population size of an area is inversely
proportional to the motility (ŜF ∼ 1

μF
), so the density of infectives increases when

the motility decreases. In other words, the environment plays a key role in how disease
spreads through both density-dependent transmission and dispersal of infectives.
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2.2 Homogenization

We aim to solve (9)–(11) numerically over tens of thousands of square kilometers,
incorporating habitat variability resolved on a 30 m scale, employing a homogeniza-
tion procedure. To illustrate this procedure, we assume that habitat structure is locally
quasi-periodic, as when the landscape is composed of repetitively dispersed subpatches
(Fitzgibbon et al. 2001; Garlick et al. 2011). As shown in Garlick et al. (2011), FFT
analysis of landscape patterns in southern Utah indicate that quasi-periodicity is justi-
fied, and fortunately the exact landscape period (nor, indeed, quasi-periodicity itself)
is not needed in order for this homogenization procedure to work. Landscape clas-
sification data is available at various resolutions. The LANDFIRE data base, from
the Landscape Fire and Resource Management Planning Tools sponsored by the US
Department of the Interior and the US Department of Agriculture Forest Service, clas-
sifies habitat in 30 × 30 m blocks (Department of Interior 2006). This provides the
needed separation of scales, as we can regard the motilities μF and μM as varying
quickly over the small scale and much more slowly over the large scale.

Let ε (0 < ε � 1) be an order parameter representing the ratio of small and large
scales (Powell and Zimmermann 2004). For example, a small scale of 30 meters and a
large scale of 3 kilometers would yield ε = 30

3,000 = 1
100 (as in Garlick et al. (2011)).

Let x be coordinates of the large spatial scale, with an associated slow time scale,
t . Define a small scale y by y = x

ε
and a corresponding fast time scale by τ = t

ε2 .
The motility coefficients become functions of both spatial scales, μF = μF (x, y)
and μM = μM (x, y). Quasi-periodicity means that there exists a vector, p(x),
such that

μF (x, y + p(x)) = μF (x, y) and μM (x, y + p(x)) = μM (x, y), (12)

for all x and y in the domain. Quasi-periodicity facilitates the homogenization proce-
dure, but is not strictly necessary for it (Holmes 1995).

With the introduction of these two scales, the derivatives become: ∇ −→ ∇x + 1
ε
∇y ,

where the subscript indicates whether the long scale (x) or short scale ( y) variable is
differentiated, and ∂

∂t −→ 1
ε2

∂
∂τ

+ ∂
∂t = 1

ε2 ∂τ + ∂t . Substituting the new scales and

derivatives into (9)–(11), after multiplication by ε2, gives:

(∂τ + ε2∂t )IF = 1

ω
(∇y + ε∇x ) · [(∇y + ε∇x )μF IF ]

+ε2

ω

[(

βF F ŜF − ω − φ
)

IF + βM F ŜF IM + γFαDM ŜF H
]

,

(13)

(∂τ + ε2∂t )IM = 1

ω
(∇y + ε∇x ) · [(∇y + ε∇x )μM IM ]

+ε2

ω

[(

βM M ŜM − ω − φ
)

IM +βF M ŜM IF +γMαDM ŜM H
]

,

(14)
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and

(∂τ + ε2∂t )H = ε2
[
αF + αDFω

αDMω
IF +

(
αM

αDMω
+ 1

)

IM − δ

ω
H

]

, (15)

where we have dropped the bar notation on the rescaled variables for convenience.
We replace IF with a series expansion in ε:

IF = IF0 + ε IF1 + ε2 IF2 + O(ε3), (16)

and use similar expansions for IM and H . Collecting terms at common powers of ε,
the O(1) equations are:

∂τ IF0 = 1

ω
∇2

y (μF IF0), (17)

∂τ IM0 = 1

ω
∇2

y (μM IM0), (18)

and

∂τ H0 = 0. (19)

Since (17) and (18) are parabolic, the solutions decay exponentially to their steady
state in fast time scales (Garlick et al. 2011). The steady-state solutions for IF0 and
IM0 are:

IF0 = cI F (x, t)

μF (x, y)
and IM0 = cI M (x, t)

μM (x, y)
, (20)

where cI F and cI M are functions without any y or τ dependence. The leading order
solution for environmental hazard, H0 = H0(x, y, t), however, depends on both spa-
tial scales.

The O(ε) equations are:

∂τ IF1 = 1

ω

[

∇2
y (μF IF1) + ∇y · [∇x

(

μF IF0

)] + ∇x · [∇y
(

μF IF0

)]]

, (21)

∂τ IM1 = 1

ω

[

∇2
y (μM IM1) + ∇y · [∇x

(

μM IM0

)] + ∇x · [∇y
(

μM IM0

)]]

, (22)

and

∂τ H1 = 0. (23)

Substituting (20) into (21) and (22) and simplifying (noting that ∇y(μF IF0) =
∇ycI F (x, t) = 0 and ∇y(μM IM0) = ∇ycI M (x, t) = 0), we obtain

∂τ IF1 = ∇2
y (μF IFI ) and ∂τ IM1 = ∇2

y (μM IMI ). (24)

Considering the steady state problems for IF1 and IM1 as in the O(1) case and solving
(23), yields solutions:
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IF1 = bI F (x, t)

μF (x, y)
, IM1 = bI M (x, t)

μM (x, y)
, and H1 = bH (x, y, t). (25)

The solutions in (25) are precisely the same form as the solutions in (20), therefore
any boundary condition satisfied by (20) leaves homogeneous boundary conditions
for (25), giving IF1 = IM1 = H1 = 0.

The O(ε2) equations are:

∂τ IF2 + ∂t IF0 = 1

ω

[

∇2
y (μF IF2) + ∇2

x (μF IF0) + γFαDM ŜF H0

+
(

βF F ŜF − ω − φ
)

IF0 + βM F ŜF IM0

]

, (26)

∂τ IM2 + ∂t IM0 = 1

ω

[

∇2
y (μM IM2) + ∇2

x (μM IM0) + γMαDM ŜM H0

+
(

βM M ŜM − ω − φ
)

IM0 + βF M ŜM IF0

]

, (27)

and

∂τ H2 + ∂t H0 = αF

αDMω
IF0 + αM

αDMω
IM0 + αDF

αDM
IF0 + IM0 − δ

ω
H0, (28)

where the mixed derivative terms containing IF1 or IM1 have vanished since IF1 =
IM1 = 0.

In the fast time scale, τ, IF2 and IM2 tend to steady state solutions rapidly, so relevant
equations in the slower time scale are

∂t
cI F

μF
= 1

ω

[

∇2
y (μF IF2) + ∇2

x cI F + γFαDM ŜF H0

+
(

βF F ŜF − ω − φ
) cI F

μF
+ βM F ŜF

cI M

μM

]

, (29)

∂t
cI M

μM
= 1

ω

[

∇2
y (μM IM2) + ∇2

x cI M + γMαDM ŜM H0

+
(

βM M ŜM − ω − φ
) cI M

μM
+ βF M ŜM

cI F

μF

]

, (30)

and

∂t H0 = αF

αDMω

cI F

μF
+ αM

αDMω

cI M

μM
+ αDF

αDM

cI F

μF
+ cI M

μM
− δ

ω
H0, (31)

where the values for IF0 and IM0 in (20) have been used to write equations in terms of
dependent variables on slower scales, cI F (x, t) and cI M (x, t). Note that dependence
on the small scale, y, is retained through coefficients containing ŜF or ŜM .

We now explain the averaging procedure associated with homogenization in two
spatial dimensions in terms of infected females. The procedure is the same for infected
males. Let p(x) in (12) be defined as the periodicity vector p(x) = [l1(x1), l2(x2)]T .
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We determine the homogenized problem by averaging each term of the system (29)–
(31) over a l1(x1) × l2(x2) cell, with area Acell = l1(x1)l2(x2). The average of a
function v(x, y) over an l1(x1) × l2(x2) cell is defined as

〈v〉 = 1

Acell

l1(x1)∫

0

l2(x2)∫

0

v(x, y)dy1dy2, (32)

a local average for the current position of interest (Holmes 1995).
Using periodicity on a cell and the Divergence Theorem,

〈

∇y
2(μF IF2)

〉

= 1

Acell

∫

∂0

n · ∇y(μF IF2)d Sy = 0, (33)

where ∂0 is the boundary of the cell, n is the outward normal vector, and d Sy

is along the cell boundary. The periodicity on the small scale also gives that the
flux of individuals on either side of the cell boundary is the same. The number of
infected individuals that are mobile (i.e. leaving the area) is proportional to μF IF ,
and continuity conditions therefore apply to this quantity, i.e., μF IF (the number of
individuals) and ∇(μF1 IF ) (the flux) are continuous across boundaries. The net flux
of individuals over the boundary is proportional to the first derivative of μF IF (as
opposed to μF times the derivative of IF ), which is a consequence of the ecological
diffusion model for movement. Similarly, 〈∇2

y (μM IM2)〉 = 0.
We apply averaging to all terms in (29). This means the parameters that depend on

small-scale variability y stay inside of averages of the form (32), while parameters
and variables without y dependence can be moved outside of the averages, i.e.,

〈

∂t
cI F

μF

〉

=
〈

1

μF

〉

∂t cI F , (34)

〈

∇2
x cI F

〉

= ∇2
x cI F , (35)

〈
1

ω

(

βF F ŜF − ω − φ
) cI F

μF

〉

=
〈

1

ω

(

βF F ŜF − ω − φ
) 1

μF

〉

cI F , (36)

〈

βM F ŜF

ω

cI M

μM

〉

= βM F

ω

〈

ŜF

μM

〉

cI M , (37)

and

〈

γFαDM ŜF

ω
H0

〉

= γFαDM

ω

〈

ŜF H0

〉

. (38)

The averages are similar for the equation for IM and H0, except that the environmental
hazard H0 depends upon both spatial scales, so it must remain inside of the averages.

123



Homogenization, sex, and differential motility 379

We obtain our homogenized system after averaging (29)–(31) and simplifying. The
homogenized equations are differential equations in the large spatial and slow time
scales, with small-scale variability expressed through the averages:

∂t cI F = μ̄F

ω
∇2

x cI F + μ̄F

〈
1

ω

(

βF F ŜF − ω − φ
) 1

μF

〉

cI F

+μ̄F
βM F

ω

〈

ŜF

μM

〉

cI M + μ̄F
γFαDM

ω

〈

ŜF H0

〉

, (39)

∂t cI M = μ̄M

ω
∇2

x cI M + μ̄M

〈
1

ω

(

βM M ŜM − ω − φ
) 1

μM

〉

cI M

+μ̄M
βF M

ω

〈

ŜM

μF

〉

cI F + μ̄M
γMαDM

ω

〈

ŜM H0

〉

, (40)

and

∂t 〈H0〉 = μ̄−1
F

(
αF

αDMω
+ αDF

αDM

)

cI F + μ̄−1
M

(
αM

αDMω
+ 1

)

cI M − δ

ω
〈H0〉, (41)

where μ̄F = 1
〈

1
μF

〉 and μ̄M = 1
〈

1
μM

〉 . In fact, μ̄F and μ̄M are harmonic averages of the

motilities, a natural product of this form of homogenization (Garlick et al. 2011).
Note that (41) is in terms of the averaged environmental hazard, 〈H0〉, the hazard

terms in (39) and (40) are averages of steady state populations multiplying the hazard,
〈

ŜF H0

〉

= CF

〈
H0
μF

〉

and
〈

ŜM H0

〉

= CM

〈
H0
μM

〉

. It is a reasonable assumption that there

is a correlation between the deer aggregation and prion contamination. Therefore, in

the following simulations, we used
〈

H0
μF

〉

= σF

〈
1

μF

〉

〈H0〉 and
〈

H0
μM

〉

= σM

〈
1

μM

〉

〈H0〉
for constants σF and σM . The constants can be calculated by returning to the small

scale to compute the difference between
〈

H0
μF

〉

and
〈

1
μF

〉

〈H0〉 after each time step. This

is a time consuming process and we found that over a sufficient time period (≥1 year),
σF = σM = 1 gives very similar results, as shown in the next section.

Our homogenized model is much easier to solve numerically than (9)–(11), yet
retains the small scale variability through division by the motility coefficient (20).
This allows us to run simulations over a large domain, exploring several different
spread scenarios.

3 Simulating spread of CWD

CWD was first detected in the free-ranging mule deer population in the La Sal
Mountains of Utah in 2002. Since then 54 positive cases have been identified in
the state out of 19,000 deer tested. The area with the highest prevalence is the La Sal
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Fig. 1 A map of Southeast Utah which includes the La Sal Mountains and the Abajo Mountains (circled)
(Rasmussen 2012). Our study area is enclosed by the trapezoid. The Colorado River acts as a barrier to deer
movement

Mountains in Southeast Utah with 38 of the positive cases (UDWR 2012). During the
2011 hunting season the first positive CWD case was found in the vicinity of the Abajo
Mountains. Exploring the spread of CWD from the La Sal Mountains southwest to
the Abajo Mountains is the objective for our simulations. A map of Southeast Utah
with these mountain ranges circled is found in Fig. 1. In this section, we define the
area for the simulations, including boundary and initial conditions. We explain our
method for estimating motilities from GPS collar data and outline sources for the other
model parameters. Then we describe the assumptions for the different simulations and
compare the results.
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3.1 Study area

Our study area is the trapezoidal region east of the Colorado River in Southeast Utah
(Fig. 1). The Colorado River acts as a barrier to deer movement (Hanks et al. 2010),
so we approximate it by a line and reflect motility and population variables across it
to create a no-flux boundary (see Fig. 2). No-flux boundary conditions are used for
the other boundaries of the region as well, assuming no deer enter or leave.

Characteristic of the Colorado Plateau ecoregion (Watkins et al. 2007), our study
area is comprised of high altitude subalpine forest (the La Sal and Abajo mountains)
surrounded by valleys, canyons, shrubland, deserts, and farmland. Most deer migrate,
sometimes for more than 80 kilometers, between lower elevation winter ranges and
higher elevation summer ranges. Important winter range habitats include sagebrush-
steppe, pinyon-juniper woodlands, salt desert shrub, and ponderosa pine forests below
7,500 feet. Summer habitats include aspen forests, mountain shrub communities, Gam-
bel oak forests, montane sagebrush-steppe, spruce-fir and mixed conifer forests, mon-
tane parks and meadows, and agricultural areas (Plummer et al. 1968).

Since the La Sal and Abajo mountains are approximately 100 kilometers apart (see
Fig. 1), separated by critical winter range habitat, a management concern has been the
spread of CWD from the La Sals to the Abajos. The first CWD positive deer was found
near the Abajos during the 2011 hunting season and it is of some management concern
whether this spread is a fluke or whether we can expect the spread to continue and
the disease establish in novel territory. The study area including these two mountain
ranges is chosen so that we can explore these questions.

The Utah Division of Wildlife Resources (UDWR) divides the state into Wildlife
Management Units. Our study area is contained in two of those units, La Sal (#13)
and San Juan (#14). A 15 buck/100 doe ratio is a population management goal in
these units. Steady-state populations for our simulations were based on post-hunting
season population estimates of the UDWR (UDWR 2012). The UDWR estimates a
2 % CWD prevalence in bucks in the La Sal Mountains, while prevalence is believed
to be less than 1 % in the doe population (UDWR 2012). Samples are collected from
hunter-harvested male deer for testing, since female deer are not routinely hunted in
Utah, resulting in a lack knowledge about CWD prevalence in females.

3.2 Model parameters

In 2005–2006, the UDWR collared 50 deer, a mix of adult males, young males, and
adult females, in the La Sal Mountains. GPS data was collected on their movement,
with an emphasis on deer locations during breeding season, to explore the connection
between breeding behaviors and movement (McFarlane 2007). The time intervals for
collecting location data depended on the time of year: 12 h intervals in late winter/early
spring, 6 h intervals during spring migration/early summer, 12 h intervals during
summer/early fall, and 30 min intervals during fall migration/breeding season.

Mule deer exhibit high site fidelity to traditional summer and winter ranges with sea-
sonal migration occurring during specific times of the year. Females form matrilinear
groups which remain cohesive, particularly during the breeding season when males
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Fig. 2 Motilities for male deer during breeding season. Dark shades indicate small motility values, while
light shades indicate large values. The area for our simulation is the trapezoidal region east of the Colorado
River shown in a. The Colorado River is approximated by a line and values are reflected across that line, to
create no-flux condition at the boundary, as shown in b
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begin wandering between groups looking for receptive females (McFarlane 2007).
This somewhat complicates the idea of a motility being assigned to a land cover type,
because the use of various habitats by deer varies widely by sex and season. Partition-
ing the GPS movement data by sex and by season allowed us to estimate motilities for
males and females during winter, summer, and breeding season. We did not compute
motilities specifically for spring or fall migration, since migration occurs during a
relatively short period of time and represents the change of motility between seasons,
i.e. we treat spring migration as the transient population response to the change in
motilities between winter and summer.

To obtain motility coefficients, we used movement data from 11 female deer and 11
male deer, selected for having the most complete data (approximately a year long). We
need motility coefficients (inverse residence times) on 30 m habitat patches appearing
in southern Utah; unfortunately the GPS returns from these 22 deer are pretty sparse
across habitat types (particularly in patches where deer spend little time, which would
most strongly influence spread rates). Fortunately, the problem of estimating residence
times using sporadic GPS data has already been addressed (Johnson et al. 2008).
Johnson et al. used a continuous time correlated random walk model (CTCRW) to
construct posterior distributions of most likely paths between GPS measurements.
This allowed them to estimate residence times for habitats between sample points,
conditioned on the distribution of possible paths.

We used the R contributed package CRAWL were used to fit Johnson et al.’s
CTCRW model to our deer location data and drew 50 samples of possible paths
between subsequent GPS observations to build distributions of locations at 1 min time
intervals, as outlined in Garlick (2012) and briefly described here. If m(t) is a con-
tinuous, smooth path of locations, then the instantaneous rate of change in location is
velocity, v(t). An Ornstien–Uhlenbeck process can be used to model velocity, defined
by

v(t + �) = γ + e−β�[v(t) − γ ] + ζ (�), (42)

where � is the change in time, γ is mean velocity, β is an autocorrelation parameter,
and ζ is a two-dimensional Gaussian random variable,

ζ ∼ N (0, σ 2[1 − exp(−2β�)]/2β). (43)

The correlation parameter, β, controls how rapidly the influence of past speed decays;
large β implies more rapid decay. The parameter σ controls the overall variability in
velocity through the time step �. When � is close to zero there is almost no change
in velocity. However, when � → ∞ the next velocity is completely random with
variance σ 2. Equations (42) and (43) are therefore defining the velocity at time t + �

as a random variable whose variance grows with � plus an adjustment related to the
velocity at time t . Then m(t) is a continuous-time location process obtained by

m(t) = m(0) +
t∫

0

v(s)ds. (44)
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Thus a model for animal location is obtained by modeling velocity. The CTCRW
model is defined by (42) and (44).

A sample of 50 possible paths were drawn from the predictive posterior distribution
for possible paths for each deer. We used the LANDFIRE data set (Department of
Interior 2006) to classify each predicted location by land cover type. Minutes spent in
each of 38 land cover types were counted and the mean time spent (residence times)
calculated in units of minutes per block. The small-scale motility coefficients were
obtained from the residence times by taking the multiplicative inverse and converting
to units of square kilometers per day. Even with 50 samples, some classifications
did not contain any data points or predicted locations during a particular season; these
were assigned motilities of 12.96 (residence time of only a second) to avoid division by
zero. This value is sufficiently high to keep deer densities extremely low in those areas
during the simulations. The motility coefficients are found in Table 2. The summer,
breeding season, and winter motilities for male and female deer are compared in Fig. 3
for the area containing the La Sal Mountains.

The other parameters used in the simulations are found in Table 1, many from Miller
et al. (2006). Since Miller et al. fit their ordinary differential equation models with data
from captive mule deer, they adjusted the infection rate downward by a factor of ten
for free-ranging mule deer, assuming that natural populations would exhibit one tenth
the density. Our model uses motilities to reflect the spatial spread of the disease, which
means that where motility is low, the deer are congregating, occasionally as tightly
as the captive herd in Miller et al. (2006). It is therefore unclear what infectivity
parameters to use. We explore infection rates between the scaled and unscaled values
in the simulations.

Our model assumes a steady-state population in the study area. This means that
even though the seasonal change in motilities redistributes the deer at the beginning
of each season, the total number of deer, N , in the domain needs to remain the same.
The constants, CF and CM for the steady-state population densities, ŜF = CF

μF
and

ŜM = CM
μM

, were computed separately for each season to maintain an appropriate
number of susceptible deer but redistribute the corresponding population densities
according to seasonal motilities.

3.3 Simulations

We conducted several simulations of the spread of CWD from the La Sal Mountains to
the Abajo Mountains, exploring different infection rates. The use of variable motility
was compared to a constant motility and the model with environment hazard was com-
pared to one without. Other simulations explored the spread during different seasons

and a comparison of two ways to average the environmental hazard,
〈

H0
μF

〉

(the average

that is the consequence of homogenization) or
〈

1
μF

〉

〈H0〉 (an approximation based

on the assumption that deer aggregation and prion contamination are correlated), as
discussed at the end of Sect. 2.2.

An alternating direction implicit (Mitchell and Griffiths 1980) numerical method
was adapted for the system of homogenized equations (39)–(41) (see Garlick 2012).
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Table 2 Mule deer motility coefficients in square kilometers per day

LANDFIRE Winter Summer Breeding

Classification, EVT Male Female Male Female Male Female

11 Open water (0.14 %) 0.10 0.22 0.29 0.40 0.27 0.99

21 Dev. open space (0.11 %) 0.57 0.44 0.16 0.12 0.25 0.05

22 Dev. low intensity (0.11 %) 0.54 0.38 0.07 0.08 0.03 0.02

23 Dev. med. Intensity (0.01 %) 0.42 0.41 0.40 1.30 0.41 0.96

31 Barren (4.97 %) 0.44 0.37 0.12 0.06 0.20 0.43

81 Pasture/hay (0.78 %) 0.51 0.31 0.08 0.36 0.17 0.03

82 Irrigated crops (0.03 %) 1.43 0.62 0.14 0.05 0.19 0.52

2001 Sparse veg. (0.27 %) 0.41 0.51 0.29 0.14 0.53 1.30

2006 Alpine sparse veg. (0.87 %) 0.82 1.56 0.09 0.08 0.21 12.96

2011 Aspen (4.75 %) 0.29 0.23 0.05 0.03 0.12 0.04

2016 Pinyon-juniper (33.96 %) 0.27 0.19 0.11 0.05 0.19 0.07

2051 Dry mixed conifer (1.19 %) 0.23 0.20 0.15 0.04 0.10 0.06

2052 Mixed conifer (0.21 %) 0.53 0.64 0.11 0.07 0.56 0.06

2054 Ponderosa pine woodland (5.48 %) 0.23 0.23 0.15 0.04 0.19 0.04

2055 Dry spruce-fir (1.82 %) 1.73 0.97 0.08 0.03 0.56 12.96

2057 Subalpine limber pine (0.06 %) 12.96 0.18 0.12 0.08 0.95 12.96

2061 Aspen/mixed conifer (1.65 %) 0.66 0.40 0.08 0.05 0.23 0.02

2062 Mtn. mahogany (0.22 %) 0.44 0.28 0.16 0.02 0.11 0.04

2064 Low sagebrush (0.54 %) 0.29 0.23 0.10 0.04 0.17 0.07

2066 Saltbrush scrub (0.04 %) 0.73 0.31 1.10 3.33 0.88 0.51

2080 Big sagebrush (12.82 %) 0.20 0.15 0.15 0.04 0.15 0.06

2081 Salt desert scrub (1.12 %) 0.32 0.21 0.12 0.46 0.19 0.25

2086 Foothill scrub (0.27 %) 0.47 0.36 0.19 0.08 0.11 0.34

2093 Sand shrubland (0.06 %) 0.72 0.64 0.10 5.83 0.70 0.22

2103 Semi-desert chaparral (0.03 %) 0.13 0.31 0.15 0.02 0.18 0.05

2107 Gambel oak (0.05 %) 0.81 0.31 0.09 0.13 12.96 0.08

2117 Ponderosa pine savanna (0.05 %) 0.28 0.33 0.18 0.02 0.23 0.05

2126 Sagebrush steppe (0.33 %) 0.27 0.12 0.08 0.11 0.31 0.03

2135 Semi-desert grassland (0.56 %) 0.28 0.32 0.36 0.61 0.08 0.38

2153 Greasewood flat (0.26 %) 0.33 0.20 0.10 0.65 0.33 0.08

2159 Riparian (2.97 %) 0.29 0.18 0.14 0.04 0.20 0.08

2160 Subalpine riparian (0.31 %) 0.52 0.12 0.07 0.03 0.57 0.08

2180 Intro. riparian (0.81 %) 0.34 0.22 0.19 0.04 0.18 0.12

2181 Annual grass (2.19 %) 0.27 0.17 0.18 0.24 0.13 0.06

2210 Shrubland-blackbrush (14.33 %) 0.26 0.20 0.20 0.11 0.19 0.13

2214 Shrubland-manzanita (0.11 %) 0.28 0.22 0.07 0.05 0.15 0.06

2217 Shrubland-Gambel oak (6.10 %) 0.21 0.20 0.08 0.03 0.08 0.05

2220 Shrubland-big sagebrush (0.21 %) 0.22 0.14 0.20 0.10 0.38 0.03

Percentage of total area is given after each land cover type. Small numbers indicate habitats where deer
linger, while large numbers highlight areas they quickly leave
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Fig. 3 Comparison of motilities for female and male during summer, breeding season, and winter in an area
including the La Sal Mountains. Dark shades represent low motility, i.e., areas where the deer aggregate
and spend time, while the lighter regions represent high motility i.e., areas that they avoid or move through
quickly. In summer the deer are in the mountains and then move to lower elevations for winter

We chose a spatial step of 600 m in both directions and a time step of 5 days although
other step sizes work as well. The averaging was done over 3,000 m blocks (ε = 0.01).
We started with an initial number of infected deer (which depends on the simulation)
in the La Sal Mountains and simulated the spread over 10 years. Table 3 displays
the results of simulations exploring different infection rates. The number of infected
deer were computed from densities (number of infectives per square kilometer) by
NI F = ∫∫

A IF d A and NI M = ∫∫

A IM d A, where NI F is the number of infected
females and NI M is the number of infected males.
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Table 3 Simulations exploring different infection rates for the CWD model over 10 years

Simulation 1 2 3 4 5

Steady-state pop. 22,430 f 22,430 f 22,430 f 22,430 f 22,430 f

4,070 m 4,070 m 4,070 m 4,070 m 4,070 m

Initial inf. 47 f 47 f 47 f 130 f 47 f

32 m 32 m 32 m 32 m 32 m

βF F, βM F 8.9315 × 10−5 5.39 × 10−4 6.25 × 10−4 6.25 × 10−4 6.25 × 10−4

βM M , βF M 8.9315 × 10−5 5.39 × 10−4 6.25 × 10−4 0.00125 0.00125

Notes 2007 pop. ×6 ×7 1 % prev. in f βM M = βF F × 2

Results

No. of inf. f 0 f 44 f 199 f 539 f 205 f

No. of inf. m 0 m 1 m 4 m 18 m 7 m

Simulation 6 7 8 9 10

Steady-state pop. 22,430 f 22,430 f 22,430 f 16,957 33,565

4,070 m 4,070 m 4,070 m 2,543 5,035

Initial inf. 47 f 47 f 47 f 29 f 79 f

32 m 32 m 32 m 11 m 54 m

βF F , βM F 6.25 × 10−4 6.25 × 10−4 7.15 × 10−4 6.25 × 10−4 6.25 × 10−4

βM M , βF M 0.0019 0.0019 0.00212 0.0019 0.0019

Notes βM M = βF F × 3 No hazard ×8 2010 pop. Obj. pop.

Results

No. of inf. f 214 f 112 f 1,058 f 7 f All

No. of inf. m 13 m 5 m 55 m 0 m All

Steady state-state populations are from population estimations made by the UDWR (2012). Numbers of
females are indicated by f and numbers of males by m. The results are in terms of numbers of infected
males and females. The simulation numbers (1, 2, . . . , 10) are to aid in referring to particular simulations
in the text

The first eight simulations use the 2007 estimated populations (the peak population
estimate for the last 10 years) for the study area of 22,430 females and 4,070 males,
using an 18:100 buck to doe ratio (from post hunting season population counts). Initial
conditions of 2 % prevalence in males (32 infectives) and 0.5 % prevalence in females
(47 infectives) were used for Simulations 1–3 and 5–8. The infection rate from Miller
et al. (2006) of 8.9315 × 10−5 (Table 3) resulted in the disease dying out in 10 years
(Simulation 1). This has not been the case since new cases of CWD have been detected
in the La Sal Mountains every year since 2002. Increasing this rate by a factor of ten
(i.e. to the nominal value estimated by Miller et al. for penned dear) resulted in all
susceptible deer becoming infected. Presumably the ‘true’ value of the infectivity is
in between these two extremes, and we focused other simulations on this regime.

An infection rate of 5.39 × 10−4 (8.9315 × 10−5 × 6) yields one infected male
and 44 infected females at the end of 10 years (Simulation 2). Increasing the rate to
6.35×10−4 yields 199 infected females and 4 infected males (Simulation 3). Changing
the number of initial infected females from 47 to 130 (1 % prevalence) resulted in 539
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Fig. 4 The results of running the simulation for 10 years using βF F = βM F = 6.5 × 10−4 and βM M =
βF M = 0.0019. The initial conditions are shown in Table 3, Simulation 6. The lighter the shade the higher
the density (in number per square kilometer) of infected deer in a and b and the higher the concentration of
prions in the environment in c. The densities of infected male and female deer were returned to the small
scale at the end of the simulations by using interpolation. Environmental hazard, however, remains in terms
of the homogenization scale, which accounts for the smooth appearance. The amount of environmental
hazard is in units of mass per square kilometer

infected females and 18 infected males (Simulation 4). Arguably male deer engage
in risky behaviors (e.g. licking to test for receptivity during breeding season), and
potentially should have higher rates of transmission. Returning to 0.5 % prevalence in
females and setting the infection rate for males (βM M = βF M = 0.00125) to be twice
that of females (βF F = βM F = 6.23 × 10−4) increases the number of infectives to
205 females and 7 males (Simulation 5). Tripling the infection rate for males gives 214
infected females and 13 infected males (Simulation 6). The result of this simulation
is shown in Fig. 4.

Parameters controlling prion release into the environment are the least well estab-
lished. To see how strongly our model of environmental hazard influences rates of
spread we kept the same initial conditions and infection rates but ran the model with-
out prions collecting in the environment (Simulation 7). After 10 years the num-
ber of infected females was 112 compared to 214 for the model with environmental
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hazard. The number of infected males was 5 compared to 13. Simulation 8 resulted in
an increase in infected males (from 32 to 55 over 10 years) by using infection rates
βF F = βM F = 7.15 × 10−4 and βM M = βF M = 0.00212. It is interesting to note
that this was the only one of the first eight simulations that resulted in an increase
in infected male deer from the initial amount of infectives. The number of infective
females, however, increased for lower infection rates. This could be due to the fact that
the estimated motilities for males are consistently larger than those for females (see
Table 2) in key mule deer habitats, such as sagebrush steppe, pinyon-juniper forest,
and ponderosa pine woodland. This means that female deer congregate more, lead-
ing to higher rates of transmission, while male deer wander more. This connection
between motility and disease spread is a basic feature of the CWD model. Finally,
due to harvesting practices, there are about seven times more susceptible females than
males (UDWR 2012).

To test model sensitivity to population density we returned to βF F = βM F = 6.23×
10−4, βM M = βF M = 0.0019 and varied the steady-state population of susceptibles.
The estimated population for the study area for 2010 with 15 bucks to 100 does (from
post hunting season population counts) is 16,957 females and 2,543 males. Using these
numbers resulted in 7 infected females and 0 infected males (Simulation 9). The goal of
the UDWR for the two management units in our study area is to have an objective pop-
ulation of 38,600 mule deer (UDWR 2012). Using this population with the goal of 15
bucks to 100 does, all the deer become infected by the end of 10 years (Simulation 10).

Finally, to illustrate the effects of differential motility, we compared model results
with variable motilities to those resulting from constant motility, computed as a
weighted average (Simulations 11 and 12 in Table 4). Beginning with 214 infected
females and 64 infected males and a susceptible population of 21,348 females and
3,202 males, the model with variable motilities resulted in 890 infected females and
40 infective males after 10 years, compared to 48 infected females and 2 infected
males for the mode with constant motility. The spread was much wider for the con-
stant motility model, as expected, but rates of disease transmission were an order of
magnitude lower (see Fig. 5). This is a substantial difference, illustrating that low
motilities in the variable motility model aggregate deer causing an increase in the
number of infectives while slowing the spread into new areas, an effect absent in the
constant motility model.

As mentioned at the end of Sect. 2.2, we save computational time by using
〈

H0
μF

〉

=
σF

〈
1

μF

〉

〈H0〉 (similar for male motilities). In simulations 13 and 14 (see Table 4) we

test this using σF = σM = 1. The average
〈

H0
μF

〉

is computed by returning to the small

scale every time step. In order to make this computationally feasible, we subsampled
the motility matrix for our study area, using every third value. This resulted in 94
infected females and 5 infected males at the end of 10 years. Subsampling in this

same manner for the simulation using σF

〈
1

μF

〉

〈H0〉, we obtained similar results, 105

infected females and 6 infected males. This indicates that the approximation is worth
the computational savings and makes it possible to numerically solve the equations
for a large domain.
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Table 4 The results of simulations comparing variable motilities with a constant motility (Simulations 11
and 12) and a comparison of two ways of averaging the environmental hazard (Simulations 13 and 14)

Simulation 11 12 13 14

Steady-state pop. 21,348 f 21,348 f 22,430 f 22,430f

3,202 m 3,202 m 4,070 m 4,070 m

Initial inf. 214 f 214 f 47 f 47 f

64 m 64 m 32 m 32 m

βF F , βM F 0.0005562 0.0005562 0.000625 0.000625

βM M , βF M 0.0007843 0.0007843 0.0019 0.0019

Notes 2002 pop. Constant motility
〈

H
μ

〉 〈
1
μ

〉

〈H〉
Results

No. of inf. f 890 f 48 f 94 f 105 f

No. of inf. m 40 m 2 m 5 m 6 m

Fig. 5 The density of male infectives simulated with variable motilities (a) and with a constant motility
(b) computed as a weighted average of the male motilities. For the initial vales and infection rates used see
Table 4, Simulations 11 and 13. The simulation with variable motilities predicted a total of 930 infected
deer after 10 years, while the constant motility simulation predicted a total of 50 infected deer

The motilities for males and females vary with season, so we ran a simulation to
compare the spread of CWD over a single season to see if time of year influences
spread. The same steady-state susceptible population and number of infectives were
used at the beginning of each season. The length of each season is defined by how
the GPS movement data was collected (153 days for summer, 61 days for breeding
season, and 151 days for winter). The results are found in Table 5 and shown in Fig. 6
for male deer. Even though breeding season is much shorter than winter, the increase
in infectives was very similar. However, the spread of infectives during winter was
much wider than during breeding season. This may be due to the aggregation of deer
on winter ranges increasing the transmission of prions, in concert with the movement
that does occur this time of year, as shown by the data. Breeding season had a net
increase of 0.23 infected females per day and 0.1 infected males per day, much higher
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Table 5 Comparison of CWD
spread over one season

The length of each season is
defined by how the GPS
movement data was collected
(153 days for summer, 61 days
for breeding season, and
151 days for winter). The
number of infectives per day is
the net increase or decrease in
the number of infectives divided
by the length of the season

Simulation 15 16 17

Steady-state pop. 22,430 f 22,430 f 22,430 f
4,070 m 4,070 m 4,070 m

Initial inf. 47 f 47 f 47 f

32 m 32 m 32 m

βF F , βM F 0.000625 0.000625 0.000625

βM M , βF M 0.0019 0.0019 0.0019

Notes 1 summer 1 breeding season 1 winter

Results

No. of inf. f 59 f 61 f 62 f

No. of inf. m 31 m 38 m 40 m

f inf. per day 0.08 0.23 0.1

m inf. per day −0.007 0.1 0.05

Fig. 6 A comparison of CWD spread for one season for male mule deer. The same initial values were used
at the beginning of each season, as found in Table 5. The resulting numbers of infectives were quite similar
(31 for summer, 38 for breeding season, and 40 for winter). However, spread occurred over a much larger
area during winter than during breeding season and summer
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than 0.1 infected females per day and 0.05 infected males per day during winter. This
reflects that breeding behaviors can increase the number of new infectives this time of
year.

4 Stability and asymptotic speed of spread

As illustrated by the simulations above, use of ecological diffusion, which realistically
aggregates populations in favorable environments, and a standard SI disease model
allows for habitat to condition how disease spreads. It is easy enough to understand
intuitively how this would work; if there is enough favorable habitat to aggregate sus-
ceptibles, disease can take off locally. Obviously a critical threshold could be passed if
either the susceptible population is large enough or if there are enough small patches
of attractive habitat spread amid less favorable environments such that local popu-
lations exceed disease outbreak thresholds. However, these mechanisms presuppose
landscape variability, and consequently analytically predicting when diseases could
invade a landscape seems difficult. Skellam (1951) introduced the idea of biological
invasions for constant coefficient reaction–diffusion equations by estimating the speed
of the spread of muskrats across Europe. Shigesada and Kawasaki (1997) extended
it to ecological diffusion over an environment composed of two types of patches. In
this section we will use the results of homogenization to develop a way to calculate
invasion speeds over very heterogeneous landscapes, using the averaged coefficients
to explore invasion speeds and critical population levels for specific areas.

The spatially-structured “invasibility” of large-scale landscapes can be examined
via the homogenized equations (39)–(41). While solutions to the homogenized equa-
tions are not the state variables of interest, the infected population is related by rescal-
ing the homogenized solution using the motility (12). Since the motilities are constant
within season, disease prevalence can only grow in time if solutions to the homogenized
equations grow. Consequently, spread can be investigated by using the homogenized
equations, averaging over small-scale variability.

We consider the system without the environmental hazard, assuming that horizontal
transmission occurs on a faster time scale than accumulation of prions in the environ-
ment. In any event, from the standpoint of invasibility, accumulation of prions would
only accelerate transmission, so neglecting prion hazard is a conservative assumption.
With this caveat the homogenized system can be written:

∂t u = D1∇2
x u + A1u + A2v (45)

∂tv = D2∇2
x v + B1v + B2u, (46)

where u = cI F and v = cI M for notational simplicity. The coefficients, after multi-
plication by ω to return to the original time scale, are:

D1 = μ̄F , D2 = μ̄M (47)

A1 = μ̄F

〈(

βF F ŜF − ω − φ
)

1
μF

〉

, B1 = μ̄M

〈(

βM M ŜM − ω − φ
)

1
μM

〉

, (48)

A2 = μ̄FβM F

〈
ŜF
μM

〉

, and B2 = μ̄MβF M

〈
ŜM
μF

〉

. (49)
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At the leading edge of the disease invasion propagating at speed c in the direction
(w.l.o.g.) x we assume a traveling solution of the form

(

u
v

)

=
(

u0
v0

)

eσ t+λ(x−ct), (50)

where u0 and v0 are arbitrary constants, σ is the growth rate, λ < 0 is the rate of
decrease of prevalence in the frame of reference of the front. Substituting (50) into
(45) and (46) and rearranging gives the eigenvalue relation,

(−σ + cλ + A1 + D1λ
2 A2

B2 −σ + cλ + B1 + D2λ
2

)(

u0
v0

)

=
(

0
0

)

. (51)

Setting the determinant of the matrix in (51) to zero gives the dispersion relation.
Following Okubo et al. (1989), (but using nomenclature as in Powell (1997)), the

asymptotic speed can be calculated from the dispersion relation by requiring that σ = 0
(i.e. the speed is chosen so that there is no growth in the traveling frame of reference)
and dσ

dλ
= 0 (σ = 0 is the largest growth rate, so all perturbations to the front will

shrink in this frame of reference). These requirements are precisely equivalent to the
well-known ‘minimum wave speed’ approach of Aronson and Weinberger (1978), and
result in the system of equations

f (c, λ, θ) = (cλ + A1 + D1λ
2)(cλ + B1 + D2λ

2) − A2 B2 = 0 (52)
d f

dλ
= (c + 2D1λ)(cλ + B1 + D2λ

2) + (c + 2D2λ)(cλ + A1 + D1λ
2) = 0,

(53)

where θ is a vector containing the parameters.
We can obtain an expression for the wave speed, c, by multiplying (52) by -2 and

(53) by λ and adding the resulting equations together.

c = g(λ, θ) = −2(D1 D2λ
4 + A2 B2 − A1 B1)

λ(D1λ2 + D2λ2 − A1 − B1)
. (54)

We substitute (54) into (52) to obtain a polynomial in λ, F(λ, θ) = 0. For a given set
of parameters, θ , we can numerically find a point (λ < 0, c) that satisfies F(λ, θ) = 0
and c = g(λ, θ).

The parameters, defined in (47)–(49), are dependent on the motilities, μF and μM ,
and steady-state population densities, ŜF and ŜM . The number, NF , of female deer is
given by

NF =
∫∫

A

ŜF d A =
∫∫

A

CF

μF
d A = CF A

〈
1

μF

〉

, (55)
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Fig. 7 Areas averaged across for critical population examples. Area A includes the La Sal Mountains and
is critical summer range for mule deer. It is where CWD was first discovered in Utah (2002). Area B is an
area between the La Sal and Abajo mountain ranges and is critical winter range

where A is the area of a region of interest. Likewise, the number of males is given by

NM = CM A
〈

1
μM

〉

. Then CF = μF NF
A and CM = μM NM

A and (48)–(49) become:

A1 = μ̄2
F

A

〈

1

μ2
F

〉

βF F NF − μ̄F

〈
1

μF

〉

(ω + φ), (56)

B1 = μ̄2
M

A

〈

1

μ2
M

〉

βM M NM − μ̄M

〈
1

μM

〉

(ω + φ), (57)

A2 = μ̄2
F

A

〈
1

μFμM

〉

βM F NF , and B2 = μ̄2
M

A

〈
1

μFμM

〉

βF M NM . (58)

Now our exploration of c values can be framed in terms of NF and NM , for an area
of interest and given motilities, infection rates, death rate, and cull rate.

To illustrate this, we used two rectangular regions in our study area, shown in Fig. 7.
Area A includes the La Sal Mountains and contains critical summer range habitats. It
is where CWD was first discovered in Utah in 2002. Area B is critical winter range
between the La Sal and Abajo Mountains, and the area through which a wave of
infection would have to travel to reach the Abajo Mountains.

Using population estimates for 2007 and 2010, and the population management
goal of the UDWR (objective), we calculated the female and male population for
each area separately for summer and winter, subject to the respective motilities. Those
populations in Area A and Area B for winter are shown as points on the graphs in Fig. 8.
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Fig. 8 The asterisks show populations for these areas subject to winter motilities for male (NM ) and female
(NF ) deer using the population estimates for 2007 and 2010, and the objective goal. The green curves
indicate where the asymptotic invasive speed is zero using infection rates βF F = βM F = 6.23 × 10−4

and βM M = βF M = 0.0019. In Area A the 2010 estimated population is close to the c = 0 line (color
figure online)

Fig. 9 A comparison of c = 0 lines for many different infection rates for the La Sals (Area A) with summer
motilities. The longest curve is for an infection rate of β = 8.93 × 10−5 as in Miller et al. (2006). This rate
is multiplied by 2, then 3, etc. until the curve closest to the origin, which is β = 8.93×10−5 = 6.23×10−4

(the rate used in Fig. 8)

For infection rates βF F = βM F = 6.23 × 10−4and βM M = βF M = 0.0019, contours
of invasion speed, c, are indicated. For these infection rates all of the population
points fall in the region of positive invasive speed, although for Area A the 2010
winter population estimate (193 males and 1,233 females) is close to the c = 0 curve,
indicating a much slower rate of spread.
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Fig. 10 A look at the contours for speeds, c, Area A. With summer motilities the estimated population for
2010 is between c = 0.01 and c = 0.015 kilometers per day, which is between 3.7 and 5.5 km per year. Using
winter motilities, the estimated population for 2010 falls between c = 0 and c = 0.01, making the speed
of invasion for that population less than 3.7 km per year. The infection rates βF F = βM F = 6.23 × 10−4

and βM M = βF M = 0.0019 were used

Figure 9 compares the c = 0 curves for a variety of infection rates for Area A with
summer motilities. The scaled infection rate from Miller et al. (2006), 8.93 × 10−5,
produces a threshold at the highest population values. This rate would mean that the
disease for all the population estimates would not diffuse from the La Sals under
current population levels (as indicated in simulation 1 above). The discovery of CWD
in the Abajos indicates that the disease has spread from the La Sals. An infection rate
of greater than 3.57×10−4 is needed for spread from a population the size of the 2007
estimate. This increases to 5.36 × 10−4 for a population at the 2010 level.

Figure 10 includes contours of speed, c, for Area A, comparing summer and winter
results, using βF F = βM F = 6.23 × 10−4 and βM M = βF M = 0.0019. The units of
c are kilometers per day. Converting them to kilometers per year helps put population
size into the context of the speed needed for CWD to spread the 100 kilometers from the
La Sal Mountains to the Abajo Mountains. For summer (Fig. 10a) 9.125 < c < 10.95
km year−1 at the objective population level, while c < 5.475 km year−1 at the 2010
population level. For winter the 2007 population level c is between 7.3 km year−1

and 10.95 km year−1. This would be a rate fast enough for the disease to spread 100
kilometers from the La Sals to the Abajos in approximately 10 years.

5 Discussion and conclusion

In this paper we have presented a spatial model for the spread of CWD in Utah, incor-
porating ecological diffusion as a way to connect disease spread to animal movement.
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Ecological diffusion, in contrast to the more commonly used Fickian diffusion, allows
populations to aggregate in desirable regions and avoid undesirable habitat. Conse-
quently, differential motility in landscapes affects both animal movement and the
density-dependent transmission of disease. Motility coefficients were estimated sep-
arately for each season for both male and female deer, and incorporated into a sex-
structured SI model for disease transmission. Homogenization techniques allowed
us to model spread of CWD over a large area with computational ease and analyze
asymptotic rates of spread in heterogenous landscapes. CWD has been present in the
La Sal Mountains for 10 years and has just recently been detected in the Abajos. Our
simulations showed that this time line is plausible for infection rates similar to those
estimated by Miller et al.

Connecting the landscape with speed of invasion and critical population levels can
be important from a management perspective. The permeability of key portions of the
landscape for different population levels and infectivities can be analyzed using the
methods of Sect. 4. These methods allow spread to be analyzed separately for areas
of high and low disease prevalence, land use, and recreational impact, which opens
up the possibility of managing populations to stop disease spread into critical areas.
Current populations increase spread, but lower target populations in selected areas
could potentially stop spread from those areas; our methods provide a way to estimate
critical population sizes for differing landscapes.

In the future this model could be applied to other areas in the Western U.S. where
CWD is a concern to wildlife managers. Also, the techniques outlined can be extended
to many ecological applications. Not only can they be used to model other wildlife
diseases, but they can be applied to insect infestations, invasive species, and escaped
genetically modified organisms. Tying the spatial structure of the environment to how
organisms move is key to understanding spread and invasive speed of organisms and
diseases. This is not a new revelation, however, the computational and analytic costs of
implementing rational movement models in complex landscapes has prohibited their
development. With the use of homogenization in models for ecological diffusion,
we have removed barriers to incorporating variable landscapes and discontinuous
movement in ecologically meaningful models.
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