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Abstract 

Background:  Invasive reptiles pose a serious threat to global biodiversity, but early detection of individuals in an 
incipient population is often hindered by their cryptic nature, sporadic movements, and variation among individuals. 
Little is known about the mechanisms that affect the movement of these species, which limits our understanding of 
their dispersal. Our aim was to determine whether translocation or small-scale landscape features affect movement 
patterns of brown treesnakes (Boiga irregularis), a destructive invasive predator on the island of Guam.

Methods:  We conducted a field experiment to compare the movements of resident (control) snakes to those of 
snakes translocated from forests and urban areas into new urban habitats. We developed a Bayesian hierarchical 
model to analyze snake movement mechanisms and account for attributes unique to invasive reptiles by incorporat-
ing multiple behavioral states and individual heterogeneity in movement parameters.

Results:  We did not observe strong differences in mechanistic movement parameters (turning angle or step length) 
among experimental treatment groups. We found some evidence that translocated snakes from both forests and 
urban areas made longer movements than resident snakes, but variation among individuals within treatment groups 
weakened this effect. Snakes translocated from forests moved more frequently from pavement than those translo-
cated from urban areas. Snakes translocated from urban areas moved less frequently from buildings than resident 
snakes. Resident snakes had high individual heterogeneity in movement probability.

Conclusions:  Our approach to modeling movement improved our understanding of invasive reptile dispersal by 
allowing us to examine the mechanisms that influence their movement. We also demonstrated the importance of 
accounting for individual heterogeneity in population-level analyses, especially when management goals involve 
eradication of an invasive species.

Keywords:  Bayesian hierarchical model, Boiga irregularis, Brown treesnake, Recursive computing, State space model, 
Translocation
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Background
Invasive species are among the top threats to global bio-
diversity [1]. Identifying invasion pathways and prevent-
ing translocation are the first lines of defense, but for 
individuals that evade these efforts, early detection and 
rapid response are considered the most efficient and 
cost-effective ways to prevent the spread of invasive spe-
cies [2–4]. Early detection involves surveying for incipi-
ent invasive populations before they become established, 
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and rapid response is the set of actions used to eradicate 
those populations [3]. The ability to understand and pre-
dict the dispersal of an invasive species through a novel 
environment allows managers to better target search and 
removal efforts.

An understanding of the mechanistic components of 
animal movement is critical to making informed pre-
dictions about invasive species dispersal. Nathan et  al. 
(2008) outlined these components as the animal’s inter-
nal state (attributes internal to the animal such as stress 
levels, health, and behavior), how it moves, its navigation 
capacity, and external factors (those external to the ani-
mal such as weather, time of day, and landscape features) 
influencing its movement [5]. While species-level or pop-
ulation-level summaries of these mechanisms are useful 
for answering broad questions about movement, each 
of these mechanisms varies at the individual level, mak-
ing individual heterogeneity an important consideration 
when making population-level movement inference [6–
8]. This is especially true for invasive species, where the 
aberrant movements of a few individuals can ultimately 
dictate the speed of an invasion [9]. Variation in disper-
sal patterns also affects invader survival [10] and repro-
duction [11, 12], which has implications for population 
and metapopulation dynamics within an invasion [13, 
14]. Eradication of an invasive species hinges on our abil-
ity to detect and remove all individuals, including those 
with particularly high movement propensity. Studies with 
the goal of informing eradication efforts of invasive spe-
cies must consider individual heterogeneity to ensure 
coverage of all individuals within a population, allowing 
managers to determine how heavily they can rely on pop-
ulation-level averages of movement parameters. Thus, 
understanding how detectability changes with variation 
in a movement mechanism is useful in early detection 
and rapid response efforts [15]. We use the term “individ-
ual heterogeneity” in this work to refer to the differences 
in movement parameters among individuals in a popu-
lation. Although this term can also be used to describe 
heterogeneity in a single individual’s movements over 
time, we focus on among-individual variation because 
the applications of this work involve the management of 
invasive reptile populations.

The cryptic appearance of many invasive reptiles makes 
them some of the most difficult invasive species to detect 
and remove [16]. Reptiles comprise 15% of all invasive 
species and have caused the decline, range contraction, 
and extinction of native species around the world, repre-
senting a serious ecological threat [17, 18]. Most reptile 
invasive ranges consist of warm tropical or subtropical 
climates. The relatively stable ambient temperatures and 
lack of defined breeding seasons, characteristic of these 
environments, allow reptiles to be active year-round in 

most of their invasive ranges. On smaller temporal scales, 
their feeding strategies range from active foraging (e.g., 
brown anoles, [19]) to ambush predation (e.g., Burmese 
pythons, [20]). Species that use the latter strategy may 
not move for days to weeks before and after a large meal 
[21, 22]. Low seasonal variation in climate and sporadic 
movement due to ambush predation can make invasive 
reptile movement unpredictable and difficult to model 
without an understanding of factors that influence move-
ment mechanisms.

Reptiles also exhibit a high degree of individual het-
erogeneity that further complicates predicting their 
movements. For some species, heterogeneity within pop-
ulations has been attributed to differences in personal-
ity and behavioral syndromes, such as aggression [23] or 
boldness [24], as opposed to passivity or shyness, respec-
tively. Movement patterns can also change with the habi-
tat an individual uses [25], its body condition [22], and 
whether an individual is located on the periphery of its 
invasive range versus in the core [26]. Further, behavior 
and landscape position may interact in situations where 
bold individuals make more frequent or longer move-
ments through a low-quality habitat matrix than shy indi-
viduals [27]. These sources of individual heterogeneity 
are rarely incorporated as mechanisms in the movement 
process of a reptile (but see [28]). For example, quantify-
ing the probability an individual moves from one habitat 
patch to another on a given day, and which habitat patch 
it will most likely move to, is invaluable to early detec-
tion and rapid response planning for cryptic species that 
have low detection probabilities. However, the landscape 
arrangement of a species’ invasive range may be vastly 
different from that of its native range, limiting the use 
of previous movement research to inform eradication 
efforts. An understanding of the mechanisms driving 
reptile movement in their invasive ranges can improve 
our ability to predict their spread or conduct an eradica-
tion program. There are multiple ways to account for this 
individual heterogeneity when modeling animal move-
ment. Individual- (or agent-) based models allow for 
simulation of individual trajectories while allowing for 
complexity, such as changes in life history or intraspecific 
interactions [29, 30]. However, these simulations do not 
provide statistical inference on movement parameters or 
population-level structure. Bayesian hierarchical mod-
els allow for parameter estimation at both the individual 
and population levels, but are limited in their mechanis-
tic realism by the amount of data needed to fit the model 
[31]. Approaches exist to merge these two methodolo-
gies [32, 33], and they are inherently related in that the 
data level of a hierarchical model is a simple individual-
based movement model if it can generate a movement 
trajectory.
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The brown treesnake (Boiga irregularis) invasion on 
the island of Guam is one example of a system where a 
mechanistic approach to movement inference is benefi-
cial. The brown treesnake is a generalist predator respon-
sible for the extirpation or severe decline of all of Guam’s 
native terrestrial vertebrates [34–36]. It is highly cryptic 
with very low detection probabilities during visual sur-
veys [15]. Brown treesnakes use their cryptic coloring 
and body shape to aid nocturnal hunting, which involves 
a mixture of ambush predation and active foraging. They 
do not move for up to a week after consuming a large 
prey item [22, 35]. Within its native range, the brown 
treesnake has only two other snake predators and one 
only consumes its eggs, and it has no major predation 
pressure in its invasive range on Guam [37]. Like many 
invasive reptiles, a primary invasion pathway for brown 
treesnakes is the transportation system [35, 38]. How-
ever, little is known about how this species navigates 
through patchy landscapes, such as an urban port of 
entry, or how it behaves after translocation into a novel 
environment. Translocation is a source of stress for most 
animals, including snakes, and can cause changes in an 
animal’s stress hormone levels [39–41]. Translocation 
often involves a change in habitat, especially if a snake is 
arriving in an urban port of entry. An early detection and 
rapid response program exists for brown treesnakes [42], 
but the way in which brown treesnakes navigate urban 
landscapes or how this might be affected by translocation 
has not been quantified.

Brown treesnakes, being poikilothermic and utilizing 
both ambush and active hunting strategies, are expected 
to exhibit periods of high and low movement (hereafter, 
“movement” and “encamped” states) in a fragmented 
urban environment [36]. Morales et al. (2004) introduced 
the use of multi-state models to accommodate the effects 
of animal behavior on movement mechanisms [43], but 
these types of models are typically fit to mammalian or 
avian telemetry data because those species provide an 
abundance of relocations obtained through GPS or sat-
ellite telemetry devices. The high numbers of brown 
treesnakes on Guam provide a unique opportunity to 
obtain extensive reptilian telemetry data, allowing us to 
explore the mechanisms of invasive reptile movement 
within this system. We conducted a field experiment in 
which we translocated brown treesnakes into an urban 
area to simulate inter-island translocation into an urban 
port of entry, a common entry pathway for invasive spe-
cies [3, 38]. We compared translocated snake movement 
parameters to those of snakes that were not translocated 
(resident snakes) to determine the effect of translocation 
on movement patterns. We translocated snakes from 
both forest and urban environments and compared them 
to non-translocated (resident) snakes in the same urban 

area to determine if there are differences in movement 
patterns depending on a snake’s habitat of origin.

We had three objectives for this study. First, our goal 
was to test if the probability of movement differs with 
translocation or snake origin. We hypothesized that 
translocated and resident snakes would have a similar 
probability of movement, as demonstrated by previous 
studies [44–46]. Second, we wanted to test if the prob-
ability of movement depended on small-scale landscape 
features (i.e., external state change). We predicted snakes 
located in natural refugia such as trees and grass would 
be less likely to move than snakes utilizing a building or 
paved surface where we assumed there to be lower diver-
sity in microclimates to select for thermoregulation [47, 
48]. We predicted this effect would be more pronounced 
in snakes translocated from forests, where we assumed 
they did not have prior experience using buildings or 
paved surfaces, and thus were less likely to use them as 
refugia. Finally, we wanted to test if movement parame-
ters (e.g., step length, turning angle) differ between trans-
located versus non-translocated snakes and between 
translocated snakes from forests versus urban areas. We 
predicted translocated snakes would make longer, more 
unidirectional movements than resident snakes based 
on previous snake translocation research [44, 45, 49, 50] 
and that this effect would be stronger in snakes translo-
cated from forests. We developed a Bayesian hierarchical 
model to account for individual heterogeneity in snake 
behavior while using treatment-level parameters to test 
these hypotheses regarding the effect of translocation 
and small-scale landscape features on brown treesnake 
movement.

Methods
Study site
This study was conducted on Andersen Air Force Base in 
Yigo, Guam, USA. We used the Andersen Air Force Base 
Housing Unit as our urban study site to emulate features 
typical of an urban port of entry such as paved roads, 
buildings, patchy tree cover, and short ground vegeta-
tion. Specifically, this 230 ha area was characterized by 
single trees or patches of trees within a matrix of short-
cut (<2 cm) lawn with a network of paved roads, houses, 
and a golf course. Dominant tree species included Cocos 
nucifera (niyok or coconut palm), Delonix regia (arbol del 
fuego or flame tree), and Casuarina equisetifolia (gago or 
Australian pine). Our study site abutted contiguous forest 
on the eastern edge and a mix of suburban homes inter-
spersed with smaller forest patches on all other sides.

Experimental design and data collection
We collected brown treesnakes by hand during night-
time visual surveys and with mouse-baited traps that 
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were checked daily. We limited our study to small snakes 
between 700 and 1000 mm snout-to-vent length because 
snakes of this size are most often found in Guam’s transit 
system and thus at highest risk of translocation [38]. We 
assigned snakes to three treatment groups based on ori-
gin and translocation status: Resident urban (hereafter, 
“resident”), translocated from a forest site to our urban 
site (hereafter, “forest to urban”), and translocated from a 
different urban area to our study site (hereafter, “urban to 
urban”). We chose these groups to determine how snakes 
translocated into an urban area (simulating an urban 
port of entry) move compared to snakes that normally 
reside in an urban area. We translocated snakes from 
both forests and other urban areas to determine if habi-
tat of origin changes how translocated snakes move in a 
new environment. For example, we expected snakes from 
other urban areas to exhibit a less pronounced effect of 
translocation of their movements, because they presum-
ably have more experience navigating a landscape with 
pavement and buildings.

We found resident snakes in our urban study site, 
equipped them with a transmitter in the laboratory and 
returned them to the location in which they were found 
the following day. To simulate travel by ship, we collected 
translocated snakes from forests and urban areas around 
Guam, held them in the laboratory for up to six days with 
access to water and relocated them into our urban site. 
Though all snakes likely experienced increased stress 
from capture, handling, and tagging, we considered 
the longer holding time of translocated snakes to be an 
increase in  stress relative to residents. We did not have 
a large enough sample size to test the effects of holding 
time on movement. We obtained translocated snakes 
from locations that were at least 2 square kilometers of 
contiguous tree cover or human development (assessed 
visually using satellite imagery), respectively for forest to 
urban and urban to urban snakes, and 5 kilometers away 
from the boundary of our study site. All snakes were 
equipped with a very-high frequency (VHF) transmit-
ter (Holohil BD-2, 1.4–1.6 g, Holohil Systems Ltd., Carp, 
Ontario, Canada) attached to their tail using the subder-
mal stitch attachment method described by Riley et  al. 
[51], with an additional wrap of medical tape around the 
transmitter to reduce the risk of catching on vegetation. 
We ensured the mass of the transmitters did not exceed 
5% of the snake’s body mass.

We tracked one cohort of brown treesnakes in each of 
the following seasons: Two wet seasons (June to Septem-
ber 2018 and 2019) and one dry season (February to April 
2019), with snakes in all three experimental treatment 
groups in each season. We originally incorporated these 
seasonal effects due to hypothesized decreases in move-
ment during the dry season, but ultimately combined 

them due to small treatment group sample sizes in each 
season. We tracked snakes daily between 0800 and 1400 
h primarily via homing and triangulated their location 
using a minimum of five azimuths when we could not 
access a snake’s daytime location. Brown treesnakes pri-
marily move at night, and we assumed snakes were sta-
tionary during our daytime tracking and thus this analysis 
quantifies linear nightly movement distance, discounting 
smaller-scale nightly movements that result in individu-
als returning to the same daytime refugia. Because our 
goal was to evaluate movement in the context of early 
detection and rapid response programs, we felt focusing 
on this scale of movement was justifiable for our objec-
tives. Turning angles and step lengths thus describe sum-
maries of daily dispersal of snakes rather than fine-scale, 
or step-by-step, movements.

Snakes were often underground, in tree branches, 
or otherwise hidden from view and thus the risk of an 
observer disturbing a snake was low. We recorded homed 
snake positions using Garmin® GPSMAP 64x (Garmin 
International, Inc., Olathe, Kansas, USA) series global 
positioning units, with signal error primarily ranging 
from 3 to 5  m, and occasionally ranging up to 15 m of 
error in very few cases. Posterior mode positions from 
triangulation data were estimated using the R package 
“razimuth,” which fits a Bayesian azimuthal telemetry 
model to estimate the individual’s location [52, 53]. We 
validated the accuracy of our triangulation relocations by 
triangulating and homing a subset of snakes, and found 
the median difference in the homing estimate and trian-
gulation posterior mode was 6 m, and because the spa-
tial extent of our landscape features was much larger 
than this (see Landscape Covariates below), we felt use of 
these triangulated estimates was appropriate.

Landscape covariates
To match an appropriate scale of snake movement, we 
used 0.7-m resolution satellite imagery (Satellite Imag-
ing Corporation, KOMPSAT-3 satellite sensor) to derive 
landscape covariate data in our study area. The imagery 
was collected September 24, 2018, at the end of the 
first season of data collection, and no major landscape 
changes occurred during the course of our study. To 
classify the landscape into categories, we created a train-
ing dataset of 100 digitized polygons each of pavement, 
building, grass, and tree cover within our study area that 
we used to train a random forest algorithm via R package 
“randomForest” [54] to classify pixels of a raster image. 
As with all satellite imagery and classification algorithms, 
there is inevitable error in classification accuracy. How-
ever, because we used high-resolution satellite imagery 
in our random forest algorithm, we were able to distin-
guish the shapes of trees, buildings, and roads from our 
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classified image and verify their alignment with the origi-
nal imagery. A variogram analysis indicated the effective 
spatial extent of our raster image was over 1000 m. While 
our data are fine-scale to allow for more precise feature 
definitions, the variogram analysis suggests that land-
scape features in our study site are typically not small. 
Thus, most of our landscape features are not sub-meter 
in size, but our fine-scale data allows for more precise 
estimates of feature boundaries in our study area.

Model specification
Our model consists of data-level, individual-level pro-
cess, and experimental treatment-level process sub-mod-
els. We explain the model in terms of these sub-models, 
and we list the full model in Additional File 1. In our 
data model, we converted daily-resolution relocations 
st into the difference of each successive pair, denoted by 
the 2× 1 vector δt . This vector represents the change 
in position between a snake’s location on day t − 1 and 
day t. Because snakes do not move every day, we mod-
eled velocity to arise from a mixture of normal distribu-
tions that represent two behavioral states: movement and 
encamped [43]. The mixture probability pit is the nightly 
probability of movement for individual i, or probability 
an individual makes long movements with potentially 
directed turning angles, and 1− pit is the probability of 
encampment, or an individual making short movements 
with random turning angles. We specified the data model 
as

where t is a timestep (night) for snake i in treatment 
group j. When a snake was in the movement state, its 
movement at time t, δit , was auto-regressed on its last 
movement δit−1 . This previous night’s movement was 
multiplied by the propagation matrix M , which rotates 
the direction of δit using

in which θi controls the turning angle (in radians) of snake 
i. To create more realistic trajectories, we multiplied the 
autoregression coefficient γi to each snake’s propagation 
matrix to dampen its effect. Values of γi near one cre-
ate strongly patterned, repetitive trajectories, because 
there is less variation in the turning angle between one 
movement and the next. Values of γi near zero lessen the 

(1)

δit = sit − sit−1, for t = 3, ...,Ti and i = 1, ...,Nj ,

δit ∼

{

N(γiM(θi)δit−1, σ
2
1,iI), with probability pit ,

N(0, σ 2
0 I), with probability 1− pit ,

pit = �(x′it−1β i),

(2)M ≡

(

cos(θi) − sin(θi)
sin(θi) cos(θi)

)

,

adherence to the previous movement’s pattern, allowing 
for more variation in turning angles. For example, if an 
individual had values γi = 1 and θi = π/2 , it would always 
make 90-degree turns. If γi = 0.5 and θi = π/2 , the indi-
vidual would make 90-degree turns some of the time, but 
it could make turns more or less than 90 degrees as well.

The variance parameters, σ 2
0  and σ 2

1,i multiplied by 
identity matrix I , control the variation in step length and 
direction for each state, where twice the standard devia-
tion accounts for 95% of the movement kernel at each 
step. Lower values of these parameters create trajecto-
ries where the individual’s steps will be approximately 
the same length. We specified the encamped state to have 
95% movement kernel of 10 m ( σ0 = 5 ) for all snakes, 
which is typical tree canopy diameter at our study site 
plus 5 m of GPS error, or the maximum distance we 
expected a snake’s position to change when it is resting. 
The short step lengths in the encamped state were com-
bined with random turning angles (mean = 0 ) to model 
homing behavior, allowing the snake to move around the 
canopy of the same tree from day to day, behavior we still 
considered “encamped”.

The movement state kernel size, dictated by σ 2
1,i , varied 

for each individual. Preliminary models fit to individu-
als with no movements greater than 10 m could not dif-
ferentiate between the two states and tended to estimate 
σ 2
1,i < σ 2

0  . For these individuals, we manually set all steps 
to be in the encamped state to ensure all parameters were 
identifiable. We also let θi vary among individuals, allow-
ing for differences in turning angles among snakes.

To incorporate the potential of external effects on 
the snake movement process, we specified movement 
probability pit as a probit-linear function of the small-
scale landscape feature a snake was using at the start-
ing position of each movement, xit−1 , specifically trees, 
grass, pavement, or buildings, as classified from satellite 
imagery. We allowed each individual to have its own vec-
tor of regression coefficients β i , because we expected 
individual heterogeneity in this relationship within the 
treatment groups.

Each individual snake had its own set of movement 
parameters ( γi , θi , and σ 2

1,i ) and parameters dictating the 
probability of movement ( β i ). Our individual-level pro-
cess model was comprised of these parameters, which 
arose from normal distributions that are parameterized 
by treatment-level means and variances, indexed by j:

(3)

β i ∼ N(µβ ,j ,�β ,j), for j = 1, ..., 3,

logit(γi) ∼ N(µlogit(γ ),j , σ
2
logit(γ ),j),

θi ∼ N(µθ ,j , σ
2
θ ,j),

log(σ1,i) ∼ N(µlog(σ1),j , σ
2
log(σ1),j

).
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Though θi does not have normal support, the normal dis-
tribution with hyperpriors that place the majority of its 
mass between 0 and 2π produced better mixed Markov 
chain Monte Carlo (MCMC) chains than the wrapped 
Cauchy distribution, a circular distribution traditionally 
used for turning angle parameters.

Treatment-level means arose from normal distribu-
tions, variance parameters arose from inverse gamma 
distributions, and the covariance matrix for the vector β i 
arose from an inverse Wishart distribution:

The treatment-level means were used for testing our 
hypotheses at the treatment scale. We analyzed hetero-
geneity among individuals in each treatment group as a 
derived quantity by calculating the sample variance of all 
individual-level estimates of each parameter.

Proposal recursive computation
We used the two-stage model-fitting technique described 
by McCaslin et al. [55], which allowed us to fit individual 
first-stage models to each snake in parallel using package 
“parallel” in R version 3.6.1 [56] and then use those sam-
ples as proposals in the second stage to fit the full hierar-
chical model [57, 58].

We fit the first-stage models using a latent variable 
parameterization, where zt is equal to one when a snake 
is in the movement state at time t and zt is equal to zero 
when a snake is in the encamped state at time t. We 
used an additional latent variable vt to induce conjugate 
updates on β i , as described by Albert and Chib [59]. We 
fit the following model to each snake’s trajectory in the 
first stage:

(4)

µβ ,j ∼ N(µβ ,pop,�β ,pop),

µlogit(γ ),j ∼ N(µlogit(γ ),pop, σ
2
logit(γ ),pop),

µθ ,j ∼ N(µθ ,pop, σ
2
θ ,pop),

µlog(σ1,j) ∼ N(µlog(σ1),pop, σ
2
log(σ1),pop

),

�−1
β ,j ∼ Wish((Sν)−1, ν),

σ 2
logit(γ ),j ∼ IG(qlogit(γ ),pop, rlogit(γ ),pop),

σ 2
θ ,j ∼ IG(qθ ,pop, rθ ,pop),

σ 2
log(σ1,j)

∼ IG(qlog(σ1),pop, rlog(σ1),pop).

When we integrate over latent variables z and v , the 
probability of being in the movement state at time t is pt
=�(xt

′β) . Note the prior distribution for γ is changed to 
beta, θ is changed to wrapped Cauchy, and σ 2

1  is changed 
to inverse gamma (Eq.  5). This was to create first-stage 
MCMC parameter updates that match the support of 
each parameter and did not require tuning or supervi-
sion, because we used the prior as a proposal for the 
Metropolis-Hastings update on γ and θ and a Gibbs 
update for σ 2

1  in the first stage. We accounted for this dif-
ference in model specification by using a change of vari-
ables correction in the second stage Metropolis-Hastings 
updates [55].

After fitting the model, we obtained inference for 
back-transformed parameters µγ , µσ , and p using 
Monte Carlo integration [60].

Priors
We specified the following temporary hyperpriors for 
the first stage individual models:

where I is the identity matrix. We specified the following 
priors for the full model:

(5)

δt = st − st−1 for t = 3, ...,T ,

δt ∼

{

N(γM(θ)δt−1, σ
2
1 I), zt = 1,

N(0, σ 2
0 I), zt = 0,

zt =

{

0, vt ≤ 0,
1, vt > 0,

vt ∼ N(x′tβ , 1),

β ∼ N(µβ , σ
2
β I),

γ ∼ Beta(α1,α2),

θ ∼ WC(µθ , ρθ ),

σ 2
1 ∼ IG(q1, r1).

(6)

β ∼ N(µβ = 0, σ 2
β I = 1 · I),

γ ∼ Beta(α1 = 1,α2 = 1),

θ ∼ WC(µθ = 0, ρθ = 0.1),

σ 2
1 ∼ IG(q1 = 1, r1 = 0.1),
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We used semi-informative prior distributions to mini-
mize label switching and to ensure biological realism in 
our estimates. We used prior means of 0 for the β coef-
ficients, and we used a prior covariance of one multi-
plied by the identity matrix I, which induced a diffuse 
distribution on the probit scale with no assumptions of 
the influence of covariates on movement probability or 
covariance between coefficients. The priors for µlogit(γ ),j 
regularized the treatment means for logit(γ ) away from 
zero to prevent the movement state mean from being 
equal to 0 and thus differentiated the movement and 
encamped states. The hyperparameters for µθ ,j allow the 
normal distribution to be centered on π with a variance 
that bounds the majority of the probability mass between 
0 and 2π . The mean for the prior distribution of µlog(σ ),j 
was set to be the log of 20, where 2× 20 creates a 95% 
movement kernel of 40 m, which is the average distance 
small brown treesnakes typically move in a night [61]. We 
set the prior variance for µlog(σ ),j to 100 to keep move-
ment distances biologically realistic. We chose hyperpa-
rameters for treatment-level variance parameters to be 
relatively diffuse while keeping variance estimates within 
reasonable bounds of their respective transformations.

Model fitting
We fit our hierarchical model using custom MCMC algo-
rithms written in R version 3.6.1 [56]. We ran the first stage 
algorithms for 100,000 iterations each, the second stage 
algorithm for 50,000 iterations, and verified convergence 
and mixing by visually inspecting trace plots. We removed 
the first 10% of the second-stage iterations as burn-in. In 
the two-stage proposal-recursive method, all first-stage 
parameters are autocorrelated, and we would thus tradi-
tionally update all individual-level parameters jointly in 
the second stage. However, updating the large number of 
individual-level parameters jointly in the second stage may 
result in poor mixing, so we sampled each parameter from 
its first stage sample individually using the following gener-
alized Metropolis-Hastings ratio:

(7)

µβ ,j ∼ N(µβ ,pop = 0, σ 2
β ,popI = 1 · I),

µlogit(γ ),j ∼ N(µlogit(γ ),pop = logit(0.7), σ 2
logit(γ ),pop = 1.5),

µθ ,j ∼ N

(

µθ ,pop = π , ρθ ,pop =
π2

4

)

,

µlog(σ1,j) ∼ N
(

µlog(σ1),pop = log(20), σ 2
log(σ1),pop)

= 100
)

,

σ 2
β ,j ∼ IG(qβ ,pop = 0.01, rβ ,pop = 10),

σ 2
logit(γ ,j) ∼ IG(qγ ,pop = 0.001, rγ ,pop = 1000),

σ 2
θ ,j ∼ IG(qθ = 2.5, rθ = 0.5),

σ 2
log(σ1,j)

∼ IG(qlog(σ1),pop = 0.001, rlog(σ1),pop = 1000).

where αil is the lth parameter in the vector of parameters 
for individual i. Superscript k indicates the index for the 
current MCMC iteration, ∗ indicates a proposed value, ψ 
is a vector of hyperparameters for αil , and ∗ indicates the 
second-stage proposal distribution (not the second-stage 
marginal posterior distribution of αil).

Updating each of the correlated βil coefficients indi-
vidually required the use of the joint distribution:

where o indicates observed, or updated, β coefficients, 
and u indicates unobserved, or coefficients not yet 
updated in the MCMC iteration. In our model, this cre-
ates the following Metropolis-Hastings ratio used to 
update each βi coefficient, assuming γi , θi , and σ 2

1,i have 
already been updated:

Our movement model parameters γ , θ , and σ 2
1  , were not 

sampled jointly in the first stage, thus the process distri-
bution 

[

αil |ψ ,αi,1:l−1,αi,l+1:L

]

 in Eq. 8 simplified to [αil |ψ] 
yielding

for each of γ , θ , and σ 2
1 .

To reduce computation time, we approximated 
[αil |yi]∗ using the kernel density estimate calculated 
from each parameter’s first-stage samples. We evalu-
ated kernel densities using the R package “ks” [62]. See 
Additional File 2 for a more detailed explanation of the 
Metropolis-Hastings ratios used in our model.

Hypothesis testing
We assessed the differences in treatment-level means 
for all movement parameters and movement prob-
abilities by calculating the difference between pairs of 
parameters as a derived quantity and using the poste-
rior mean of that quantity for hypothesis testing. We 

(8)
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∗
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k
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][
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,αk−1

i,l+1:L

][

αk−1

il |yi

]

∗
[
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k−1

il ,αk
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,αk−1

i,l+1:L

][

αk−1

il |ψ ,αk
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,αk−1

i,l+1:L

]

[

α∗
il |yi

]

∗

.

(9)
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βo
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(10)
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×
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il |δi
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k
i , σ
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.
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also used posterior probability to assess the strength 
of the effect, which we calculated as the proportion 
of times a treatment group’s parameter estimate was 
larger than another treatment group’s parameter esti-
mate over all MCMC iterations [63].

Results
We used locations from 84 brown treesnakes across the 
three treatment groups and three seasons: 29 in the res-
ident group, 32 in the forest-to-urban group, and 23 in 
the urban-to-urban group. Table  1 lists sample sizes of 
snakes tracked in each season by treatment group and 
cumulative number of relocations. Individual trajectories 
ranged from 5 to 77 relocations. Snakes ranged in size 
from 706 to 991 mm snout-to-vent length and ranged in 
weight from 28 to 118 g. A total of 10 snakes moved out-
side of the study site into the more contiguous abutting 
forest: three of which were resident snakes, five snakes 
translocated from forests, and two translocated from 
other urban areas. Details on these snakes are included in 
Additional File 3: Table S1.

Probability of movement
The average nightly probability of a brown treesnake 
being in the movement state (i.e., movement probability) 
was low overall, with treatment group posterior means 
ranging from 0.24 to 0.52 (Fig. 1a). Posterior probabilities 

indicate most differences in movement probability among 
translocation treatment groups were weak (Fig. 1b). The 
two exceptions were when snakes used urban landscape 
features. When in buildings, resident snakes had a pos-
terior mean movement probability 0.22 higher than 
snakes translocated from urban areas with a posterior 
probability of 0.93 (Fig. 1b). When on pavement, snakes 
translocated from forests had the largest movement 
probability, with a posterior mean movement probability 
of 0.52 (95% CI: 0.30, 0.75). This was 0.25 greater than the 
posterior mean for snakes translocated from urban areas 
with a posterior probability of 0.94 (Fig.  1b), suggesting 
snakes translocated from forests were less likely to settle 
on paved surfaces than snakes translocated from urban 
areas.

Within treatment groups, we found few differences in 
brown treesnake movement probabilities among small-
scale landscape features. The two exceptions involved 
translocated snakes moving from landscape features 
that were uncommon in their location of origin. Specifi-
cally, when snakes translocated from urban areas were 
in trees, their posterior mean movement probability was 
0.20 greater than in buildings with posterior probability 
of 0.93 (Table 2). When forest to urban snakes were mov-
ing from pavement, their posterior mean probability of 
movement was 0.19 greater than when on grass with pos-
terior probability of 0.93 (Table 2).

Resident snakes had the largest posterior mean sample 
variances among individual estimates (Fig. 2a), but differ-
ences in this measure of individual heterogeneity among 
treatment groups were overall small (Fig.  2b). The larg-
est difference in individual heterogeneity occurred when 
snakes were on grass: Resident snakes had a movement 
probability sample variance 0.05 greater than snakes 
translocated from forests with posterior probability of 
0.95 (Fig. 2b).

Some individuals had particularly high movement 
probabilities across all landscape features. Namely, resi-
dent snakes #7, #15, #25, #27, and #28 had posterior 
mean movement probabilities >0.60 on all landscape fea-
tures and >0.80 in trees, while treatment-level posterior 
means for resident snakes were <0.50 in all small-land-
scape features (posterior means 0.45 in buildings, 0.38 in 
grass, 0.41 on pavement, and 0.47 in trees, Fig.  3). This 
suggests some snakes may have a higher propensity for 
movement, regardless of their environment; however, 
the uncertainty in individual estimates limits our under-
standing of differences among individuals in this study.

Movement state parameters
Posterior mean step length parameters µσ1 ranged from 
23 to 34 m (Fig. 4a), which translates to 95% movement 
kernels of 46 and 68 m each night. We found weak 

Table 1  Sample size of brown treesnakes tracked in each of 
three seasons: wet season 2018, dry season 2019, and wet season 
2019

Resident snakes were non-translocated snakes in an urban area, forest to urban 
snakes were translocated from a forest to an urban area, and urban to urban 
snakes were translocated from an urban to a novel urban area

Season Treatment Number of 
individuals

Number 
male

Number 
female

Number of 
relocations

Wet 
2018

Resident 10 5 5 521

Wet 
2018

Forest to 
Urban

10 4 6 424

Wet 
2018

Urban to 
Urban

3 1 2 107

Dry 
2019

Resident 10 3 7 411

Dry 
2019

Forest to 
Urban

10 3 7 353

Dry 
2019

Urban to 
Urban

8 1 7 265

Wet 
2019

Resident 9 3 6 425

Wet 
2019

Forest to 
Urban

12 5 7 329

Wet 
2019

Urban to 
Urban

12 8 4 315
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Fig. 1  a Marginal posterior distributions for mean probabilities of brown treesnake movement by treatment group when a snake was located in 
each listed landscape feature µpt . Resident snakes were non-translocated snakes in an urban area, forest to urban snakes were translocated from a 
forest to an urban area, and urban to urban snakes were translocated from an urban to a novel urban area. b Heat map of marginal posterior mean 
difference in brown treesnake movement probability between treatment groups. The colors represent the difference in the first listed treatment 
group’s posterior mean compared to the second listed treatment group’s posterior mean. The posterior probability that the first listed treatment 
group is greater than the second listed treatment group is printed in each cell

Table 2  Posterior mean effect size in treatment-level probability of brown treesnake movement from small-scale landscape features

Posterior probabilities of differences are listed in parentheses. Resident snakes were non-translocated snakes in an urban area, forest to urban snakes were 
translocated from a forest to an urban area, and urban to urban snakes were translocated from an urban to a novel urban area. Values associated with posterior 
probabilities ≤0.1 or ≥0.9 are in bold

Comparison of marginal posterior distributions of movement 
probability from landscape features

Effect size of comparison (posterior probability)

Resident Forest to Urban Urban to Urban

Tree > Pavement 0.07 (0.70) − 0.09 (0.25) 0.17 (0.90)
Tree > Grass 0.03 (0.68) 0.10 (0.87) 0.06 (0.73)

Tree > Building − 0.02 (0.43) 0.06 (0.70) 0.20 (0.93)
Pavement > Grass − 0.03 (0.41) 0.19 (0.93) − 0.11(0.21)

Pavement > Building − 0.08 (0.29) 0.15 (0.83) 0.03 (0.58)

Grass > Building − 0.05 (0.31) − 0.04 (0.37) 0.13 (0.85)
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evidence that translocated brown treesnakes made 
longer nightly movements when in the movement state 
than resident snakes. Snakes translocated from for-
ests had a posterior mean step length parameter 35% 
greater than residents, and for snakes translocated from 
urban areas, this parameter was 47% greater than resi-
dent snakes. However, these estimates had high uncer-
tainty, lessening the strength of this effect (respective 
posterior probabilities 0.22 and 0.25, Fig. 4b).

There were no strong differences in individual hetero-
geneity in step length among treatment groups (Fig. 5), 
however individual heterogeneity was high overall for 
this parameter. Some individual σ1,i posterior mean 

estimates were close to 100 (resident #2, forest to urban 
#25, urban to urban #12, Fig. 6c), which corresponds to 
a nightly 95% movement kernel of >200 m.

All snakes’ posterior means for treatment-level µθ 
were close to π , indicating that snakes generally moved 
in the opposite direction ( 180◦ ) of their last movement, 
(i.e., doubled-back on their trajectory; Fig. 4a). We found 
no strong differences in turning angle among treatment 
groups, with posterior probabilities close to 0.50 (Fig. 4b).

Individual heterogeneity in θi was low, with most 
snakes’ individual estimates close to π (Fig. 6b). Resident 
snakes had the lowest individual heterogeneity in turning 
angles, with posterior mean sample variance estimates 

Fig. 2  a Marginal posterior distributions for individual heterogeneity in movement probability, or sample variance of mean probabilities of 
movement among individual brown treesnakes by treatment group when a snake was located in each listed landscape feature var(µpt ). Resident 
snakes were non-translocated snakes in an urban area, forest to urban snakes were translocated from a forest to an urban area, and urban to urban 
snakes were translocated from an urban to a novel urban area. b Heat map of marginal posterior mean difference in individual heterogeneity, or the 
sample variance of individual brown treesnake movement probabilities between treatment groups. The colors represent the difference in the first 
listed treatment group’s posterior mean compared to the second listed treatment group’s posterior mean. The posterior probability that the first 
listed treatment group is greater than the second listed treatment group is printed in each cell



Page 11 of 18Feuka et al. Movement Ecology            (2022) 10:2 	

0.73 and 1.3 lower than translocated snakes from forests 
and urban areas, respectively (posterior probabilities 0.06 
and 0.01, Fig.  5b). Forest to urban snakes had a poste-
rior mean sample variance in turning angles 0.59 lower 
than urban to urban snakes, but this difference was weak 

(posterior probability 0.20, Fig. 5b). This suggests trans-
located snakes make a higher diversity of turning angles 
among individuals than resident snakes, but without a 
strong effect of habitat of origin.

Fig. 3  Posterior means and 95% credible intervals for individual brown treesnake (thin lines, pit ) and treatment-level (bold lines, µpt ) probability 
of movement when a snake is located in or on a trees, b pavement, c grass, and d buildings. Resident snakes were non-translocated snakes in an 
urban area, forest to urban snakes were translocated from a forest to an urban area, and urban to urban snakes were translocated from an urban 
area to a novel urban area
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The autoregression parameter γ affects our interpre-
tation of θ , however, because it determines how closely 
an individual’s turning angles adhere to θ at each step. 
Posterior mean estimates of µγ ranged from 0.51 to 0.57 
among the treatment groups, values that relax the tra-
jectories’ adherence to θ and creates more natural (or 
less patterned) movement paths (Fig.  4a). We found no 

strong differences in autoregression parameter estimates 
among the three treatment groups (Fig. 4b). Specifically, 
we learned that snakes in all treatment groups tended to 
make about-face turns because µθ was estimated near π , 
but snakes did not make about-face turns at every step, 
because µγ <1.

Fig. 4  a Marginal posterior distributions for treatment-level autocorrelation µγ , turning angle µθ , and step length standard deviation µσ 
parameters dictating the brown treesnake movement process. Resident snakes were non-translocated snakes in an urban area, forest to urban 
snakes were translocated from a forest to an urban area, and urban to urban snakes were translocated from an urban to a novel urban area. b Heat 
maps of marginal posterior mean differences in brown treesnake autocorrelation, turning angle, and step length standard deviation parameters 
between treatment groups. The colors represent the difference in the first listed treatment group’s posterior mean compared to the second listed 
treatment group’s posterior mean. The posterior probability that the first listed treatment group is greater than the second listed treatment group is 
printed in each cell
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Individual heterogeneity in γi was relatively high, with 
individual posterior mean estimates ranging from 0.05 to 
0.97, however 95% credible intervals for individual γi esti-
mates were large (Fig. 6a), indicating high uncertainty in 
these estimates. There were no strong differences in sam-
ple variance in individual-level autoregression param-
eters among the three treatment groups (Fig. 5b).

Discussion
Our ability to prevent the spread of invasive species 
depends upon our understanding of the mechanistic 
components of a species’ movements through the land-
scapes it invades. The ecology of invasive reptiles creates 
unique challenges to modeling their movement, including 

sporadic movements and individual heterogeneity in 
behavior. We developed a Bayesian hierarchical model 
to accommodate these factors and to answer questions 
about how an invasive reptile’s movement mechanisms 
are affected by translocation. We also aimed to under-
stand how small-scale landscape features and habitat of 
origin affect brown treesnake movement. Though mech-
anistic modeling has been used to analyze movements of 
a variety of taxa, our work is the first to gain this type of 
mechanistic inference on invasive reptile movement.

Our findings highlight the importance of accounting 
for individual heterogeneity when researching and man-
aging invasive species. We did not find strong, consist-
ent effects of translocation or habitat origin on brown 

Fig. 5  a Marginal posterior distributions for treatment-level individual heterogeneity in movement parameters, or sample variance in 
autocorrelation var(µγ ), turning angle var(µθ ), and step length standard deviation var(µσ ) parameters among individual brown treesnakes. Resident 
snakes were non-translocated snakes in an urban area, forest to urban snakes were translocated from a forest to an urban area, and urban to urban 
snakes were translocated from an urban to a novel urban area. b Heat maps of marginal posterior mean differences in brown treesnake individual 
heterogeneity, or sample variance in autocorrelation, turning angle, and step length standard deviation parameters between treatment groups. The 
colors represent the difference in the first listed treatment group’s posterior mean compared to the second listed treatment group’s posterior mean. 
The posterior probability that the first listed treatment group is greater than the second listed treatment group is printed in each cell
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treesnake movement, mostly due to variation among 
individuals within treatment groups. Variation could be 
reduced by increasing the number of snakes tracked, but 
our sample size is comparatively high for cryptic reptiles 
that must be tracked manually to gain accurate relocation 
data. By accounting for individual heterogeneity within 
treatment groups, we can infer the consistency of treat-
ment effects among individuals. For example, we found 
weak evidence for resident snakes to be the least consist-
ent in their response to small-scale landscape features, 
while translocated snakes from urban areas generally 
behaved more similarly to one another across landscape 
features, especially on buildings and pavement. This 
suggests translocation could create relatively consist-
ent changes in snake movement behavior. Additionally, 
it highlights the baseline variation in snakes residing in 
familiar urban areas.

We found evidence that some brown treesnakes 
respond to novel small-scale landscape features by 
increasing their movement probability. Translocated 
snakes inhabiting small-scale landscape features less 
common to their habitat of origin moved more often 
than resident snakes. Specifically, snakes translocated 
from urban areas moved out of trees more  than from 
buildings, while snakes translocated from forests moved 
off pavement more  than  grass. This suggests that, in a 
rapid response scenario, determining the most likely 
origin habitat of a translocated individual can inform 
how quickly it disperses through a novel landscape. For 
example, brown treesnakes accidentally translocated via 
Guam’s transit system may be considered “urban” snakes 
and could disperse more quickly across other, more 

forested, islands in the Commonwealth of the Northern 
Mariana Islands. The lack of a consistent, generalized 
effect of translocation on movement probability agrees 
with studies in temperate environments that found no 
difference in movement frequency, a proxy for movement 
probability, between resident and translocated snakes 
[44–46], suggesting its effects are context-specific.

This landscape context is also important to consider 
when managing snakes in different environments (i.e., 
forest vs. urban). Previous research has found brown 
treesnakes avoid roads [64], however, road crossings 
in our urban study area were nearly unavoidable for a 
species with an estimated activity area of 20 ha [65]. 
Although multiple individuals crossed roads, increased 
movement probabilities around pavement suggest brown 
treesnakes translocated from forests avoid using paved 
surfaces as refugia for multiple days, which is consistent 
with previous research. Our inferred differences among 
treatment groups were weak, but we found that snakes 
translocated from urban areas had the lowest estimates 
of movement probability when located on buildings and 
pavement. This suggests that how a translocated indi-
vidual disperses through a novel environment is both 
dependent on its habitat of origin and the new environ-
ment it encounters. However, more research is needed 
to determine if these snakes preferentially select these 
urban landscape features that are similar to their habitat 
of origin.

Our observed individual heterogeneity in movement 
patterns could be attributed to internal factors we did not 
model, such as size or sex. However, we did not expect 
large differences in movement based on size. Brown 

Fig. 6  Posterior means and 95% credible intervals for individual brown treesnake (thin lines) and treatment-level (bold lines) a autocorrelation γ , b 
turning angle θ , and c step length standad σ1 parameters controlling the movement process. Resident snakes were non-translocated snakes in an 
urban area, forest to urban snakes were translocated from a forest to an urban area, and urban to urban snakes were translocated from an urban to 
a novel urban area
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treesnakes sexually mature when they reach 910–1025 
mm snout-to-vent length for females and 940-1,030 
mm for males [66]. Because only five of our snakes were 
>900 mm snout-to-vent length, we did not include sex or 
reproductive status in our model. Additionally, post-hoc 
Pearson’s correlations (Additional File 4: Table  S1) and 
comparisons of individual-level posterior mean param-
eter estimates (Additional File 4: Figs. S1 and S2) did not 
show strong relationships between movement parameter 
estimates and snake sex or size.

New invasions of translocated brown treesnakes may 
spread faster over an urban landscape than what we 
would expect in a resident population. We found weak 
evidence that translocated brown treesnakes made longer 
movements and strong evidence for differences in vari-
ation in turning angles among translocated individuals 
compared to resident snakes. These findings generally 
agree with previous translocation research on other 
snake species that found longer [44, 46, 49, 67] and more 
unidirectional daily movements in translocated snakes 
[44, 45, 50, 68]. Again, individual heterogeneity is evident 
in  our results, because we did not find treatment-level 
differences in baseline turning angles, but all treatment 
group posterior means centered around 180◦ and trans-
located snakes had more individual heterogeneity around 
this mean, suggesting they make more directed move-
ments than residents. The relatively weak effect of treat-
ment group would suggest that surveillance efforts may 
not need to consider whether a snake was a recent intro-
duction when designing search protocols, however a cau-
tious approach may be to use parameter estimates at the 
tail of the estimated distributions in movement simula-
tions to ensure coverage of dispersing individuals.

Conclusions
Our work contributes to understanding the mechanisms 
of invasive reptile movement and how these movements 
are affected by endogenous and exogenous factors to bet-
ter manage one of the most destructive invasive species 
to date. Our analysis accounts for the aspects of reptile 
ecology that make this group especially difficult to study 
and manage: Their sporadic movements and individual 
heterogeneity. Our approach also provides a starting 
point for early detection and rapid response planning, 
allowing managers to visualize a range of potential inva-
sion scenarios.

Our model is not limited to analyzing nightly move-
ments at small spatial scales. It can be applied to taxa 
that move much farther distances, as long as landscape 
covariate data are available at a scale appropriate to the 
animal’s movements. Discrete-time models, like the one 

we present here, are best suited for data with low tem-
poral resolution, and are appropriate for analyzing telem-
etry data from animals tracked no more than once daily. 
Data at finer temporal resolutions can be analyzed using 
continuous-time movement models, which mimic the 
natural movement process [69].

Our modeling approach can also be generalized to 
accommodate different forms of error and variation. In 
our study of brown treesnakes, we collected data that 
yielded accurate measurements of individual position, 
but in other systems, methods exist to account for unu-
sual forms of measurement error that may arise in both 
radio [52] or satellite [70, 71] telemetry studies. Alterna-
tively, with more data, another hierarchy could be added 
to account for seasonal variation. Guam’s wet season 
tends to be warmer than its dry season, and one study 
found an increase in brown treesnake movement prob-
ability during the wet season, but the effect was weak 
[64]. Our study did not include enough snakes per treat-
ment group per season to analyze differences in seasonal 
variation, and our estimates of uncertainty accommodate 
seasonal variation. Due to Guam’s relatively stable tropi-
cal climate, we did not expect the difference in mecha-
nistic movement parameters between seasons to be 
large enough to warrant another level of hierarchy in the 
model.

Our approach to modeling movement has broad appli-
cations for invasive species ecology and management. For 
example, Burmese pythons have been spreading through 
the Florida Keys, USA since 2002, but as of 2018 have 
not spread to the southernmost keys [72]. Our model 
could be fit to existing python movement data in Florida 
and the resulting movement parameters could be used 
to determine how quickly the invasion front is likely to 
expand. Also in the southeastern United States, Argen-
tine black and white tegus (Salvator merianae) are now 
established in Florida and Georgia from captive releases 
with indications of spread from those release sites [73]. 
When fit to tegu movement data, our model can be used 
to predict where and how quickly tegus are likely to 
spread from reported sighting locations. Our approach 
can account for seasonal variations in behavior that occur 
in temperate climates, such as tegu brumation [74–76], 
by specifying movement probability as a function of tem-
perature. In both of these applications, managers can 
obtain more biologically informed estimates of the spatial 
extent of an invasion as well as an understanding of inva-
sion speed, helping them decide when and where they 
should direct interdiction or rapid response efforts.
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