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Abstract. Ecologists often fit models to survey data to estimate and explain variation in
animal abundance. Such models typically require that animal density remains constant across
the landscape where sampling is being conducted, a potentially problematic assumption for
animals inhabiting dynamic landscapes or otherwise exhibiting considerable spatiotemporal
variation in density. We review several concepts from the burgeoning literature on
spatiotemporal statistical models, including the nature of the temporal structure (i.e.,
descriptive or dynamical) and strategies for dimension reduction to promote computational
tractability. We also review several features as they specifically relate to abundance estimation,
including boundary conditions, population closure, choice of link function, and extrapolation
of predicted relationships to unsampled areas. We then compare a suite of novel and existing
spatiotemporal hierarchical models for animal count data that permit animal density to vary
over space and time, including formulations motivated by resource selection and allowing for
closed populations. We gauge the relative performance (bias, precision, computational
demands) of alternative spatiotemporal models when confronted with simulated and real data
sets from dynamic animal populations. For the latter, we analyze spotted seal (Phoca largha)
counts from an aerial survey of the Bering Sea where the quantity and quality of suitable
habitat (sea ice) changed dramatically while surveys were being conducted. Simulation
analyses suggested that multiple types of spatiotemporal models provide reasonable inference
(low positive bias, high precision) about animal abundance, but have potential for
overestimating precision. Analysis of spotted seal data indicated that several model
formulations, including those based on a log-Gaussian Cox process, had a tendency to
overestimate abundance. By contrast, a model that included a population closure assumption
and a scale prior on total abundance produced estimates that largely conformed to our a priori
expectation. Although care must be taken to tailor models to match the study population and
survey data available, we argue that hierarchical spatiotemporal statistical models represent a
powerful way forward for estimating abundance and explaining variation in the distribution of
dynamical populations.

Key words: abundance; Bering Sea; count data; dimension reduction; Phoca largha; process
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INTRODUCTION

A tacit assumption in many models for animal count

data is that animal density remains constant over the

landscape while sampling is being conducted. This

assumption is clearly unrealistic for populations that

inhabit dynamic landscapes or whose spatial distribu-

tion varies considerably over the course of a study. For

instance, the distribution and abundance of bird species

inhabiting agricultural landscapes can vary substantially

within seasons due to cultivation and harvesting

practices (Miller et al. 2011), as can abundance of bird

and amphibian populations that are dependent on

dynamic wetland environments (Murkin et al. 1997,

Babbitt and Tanner 2000). Our own interest in

spatiotemporal variation in animal abundance stems

from involvement in surveys of ice-associated seals,

where the quantity and distribution of suitable habitat

(seasonal sea ice) changes dramatically on the scale of

weeks or even days (Ver Hoef and Jansen 2007, Ver

Hoef et al. 2014).

Early development of models for analysis of animal

count data (see Buckland et al. [2001], and references

therein) focused on design-based estimation (cf. Coch-

ran 1977), which is perhaps the most simple and reliable

approach for obtaining snapshot estimates of abun-
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dance, provided that the spatial configuration of animal

density does not vary appreciably while the study is

being conducted and that a sampling frame (e.g.,

systematic, stratified random samples) can be developed

and strictly adhered to. More recently, model-based

approaches for analyzing animal abundance from

transect or plot-based counts (Hedley and Buckland

2004, Ver Hoef and Jansen 2007, Johnson et al. 2010)

have become more prevalent. Although these approach-

es require additional (often distributional) assumptions,

model-based inference permits greater flexibility because

sampling effort can be allocated at different times and

locations than originally planned, and because features

such as temporal (Moore and Barlow 2011) and spatial

(Miller et al. 2013) autocorrelation can be included and

visualized. Model-based formulations are also much

better suited for allowing animal density to be expressed

as a function of habitat covariates, allowing ecologists to

make inferences about factors that explain variation in

animal abundance. Such inferences are crucial to both

the conservation of wild populations and the study of

their ecology, as exemplified by the recent surge in

species distribution modeling research (SDMs; Guisan

and Thuiller 2005, Elith and Leathwick 2009). In this

study, we focus exclusively on count data, although we

note that many of the same modeling constructs can also

be applied to presence–absence data (as commonly used

in SDMs).

Development of model-based estimation procedures

for analysis of count data have largely focused on

inclusion of spatial variation in abundance without as

much consideration of temporal variation. Notable

exceptions include Ver Hoef and Jansen (2007), who

included changing habitat covariates and additive

spatial and temporal effects in count models for harbor

seals; Fink et al. (2010), who developed machine

learning algorithms to explore spatiotemporal variation

in large-scale migratory bird survey data; Miller et al.

(2011), who allowed bird density to rely on habitat

covariates that varied between sample occasions (using

an N-mixture formulation; see Royle et al. 2004); Moore

and Barlow (2011), who allowed the modeled density of

fin whales to vary among years and spatial strata; and

Ver Hoef et al. (2014), who conceptualized phocid seal

counts as a function of both changing habitat covariates

and spatially autocorrelated random effects. Hierarchi-

cal generalized linear mixed models incorporating both

spatial and temporal effects are also prevalent in

analysis of population trends from count data (Sauer

and Link 2011, Ross et al. 2012), but it is not often

possible to scale up from these models to the estimates

of absolute density or abundance that are frequently

needed for population management.

The statistical literature on spatiotemporal models has

exploded in recent years (see Cressie and Wikle [2011]

for a review), and in theory, it would be possible to

embed a large number of spatiotemporal models for

animal density into model-based estimation procedures

for transect or plot-based counts. Cressie and Wikle

(2011) categorize such models as either descriptive,

where spatiotemporal autocorrelation is codified by

allowing positive covariance at times and locations that

are close together, or dynamical (i.e., process-based),

where the investigator uses knowledge of the study

system to help specify a dynamical model governing the

evolution of the spatiotemporal process over time (e.g.,

via difference equations; Wikle and Hooten 2010).

Spatiotemporal models often include one or more

strategies for dimension reduction to ease computational

burden (of which there are many; for a review see Wikle

[2010]). As such, it will not be possible to enumerate all

possible approaches for incorporating spatiotemporal

structure into abundance models. Instead, we start by

reviewing recent work in this field, aiming to provide

ecologists with intuition on the flavors of spatiotemporal

models currently available in the literature, providing

connections with relevant ecological theory where

applicable (e.g., with ideal free distributions; Fretwell

and Lucas 1970).

Next, we turn our focus to spatiotemporal modeling

considerations as they relate specifically to abundance

estimation. These include boundary conditions (emigra-

tion/immigration from the study area), demographic

closure (population increases/decreases due to mortality

or reproduction), choice of link function, and extrapo-

lation of fitted relationships to unsampled areas. After

delineating a (by no means exhaustive) suite of

spatiotemporal models for abundance estimation, in-

cluding novel formulations embodying resource selec-

tion and permitting a form of population closure, we

illustrate the consequences of different modeling choices

by analyzing both simulated data and seal count data

from transects over the Bering Sea. In both cases, the

quantity and quality of available habitat changes

dramatically while surveys are being conducted.

SPATIOTEMPORAL MODELS FOR COUNT DATA

Animal count data are most often obtained on areal

sample units (i.e., in discretized space) and at discrete

points in time. Even if sampling is not instantaneous, a

common convention in spatiotemporal models is to

discretize time at some level (e.g., daily) and to treat all

counts gathered in a given day as if they occurred

instantaneously. We follow these conventions, and

model both the abundance of animals and observed

counts by appealing to specific points in time t 2 f1, 2,
. . . , Tg and specific sample units s 2 f1, 2, . . . , Sg. For
simplicity, we assume that all sample units are the same

size (this requires apportioning counts into respective

sample units whenever transect sampling is conducted).

Our task is to construct plausible spatiotemporal models

that describe how a sample of observed counts at a

subset of n locations and times f(s1, t1), (s2, t2), . . . (sn,

tn)g are related to absolute abundance Ns,t at all times

and sample units.
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All spatiotemporal models that we examine relate

observed counts, Cs,t, obtained at a limited number of

times and sample units, to a hidden spatiotemporal

process ls,t that is defined over all sample units and

times through a standard probability mass function

(PMF), link function, covariates x, and parameters h.
For example, the formulation

½C� ¼ PoissonðkÞ

k ¼ expðoþHlÞ ð1Þ

specifies that counts are Poisson distributed with a log-

link function on latent abundance intensity (k). Follow-
ing Wikle and Hooten (2010), we use the matrix H to

map from the full set of ST values of ls,t to the smaller

set of n counts. We also include log offsets o to allow for

differences in the amount of area surveyed (this could

also be used to help model detection probability when

detectability is less than 1.0; see Discussion). In practice,

more flexible distributional forms could be considered,

such as the negative binomial or Conway-Maxwell

Poisson (Wu et al. 2013), but our focus here is in

describing general forms for the spatiotemporal process

ls,t, and we often use the Poisson as a convenient PMF.

Models with the form of Eq. 1 can sometimes be

analyzed directly via maximum likelihood, but intro-

ducing even moderate complexity in models for ls,t can

make computation intractable. To preserve flexibility,

we prefer to specify prior distributions for model

parameters and to conduct Bayesian inference (Gelman

et al. 2004) on complete data likelihoods (Dempster et

al. 1977). We follow the tradition of Berliner (1996) in

expressing the posterior distribution associated with Eq.

1 as consisting of an observation model, a process

model, and a set of prior distributions. Letting [a j b]
denote the conditional distribution of a given b, we write

the joint posterior distribution for parameters h and

latent variables l (up to proportionality constant) as

½l; h jC; o�}½C j o; l�½l jh�½h�: ð2Þ

Here, [C j o, l] simply describes the Poisson observation

model (Eq. 1), [l j h] describes the process model (how

latent abundance varies over space and time), and [h]
describes the prior distribution on model parameters.

Although care must be taken in formulating observation

and prior parameter models, we now turn to describing

different ways of formulating the spatiotemporal process

model before discussing ways of using dimension

reduction to decrease computational burden.

Descriptive vs. dynamical formulations

Cressie and Wikle (2011) classify spatiotemporal

models into two types: descriptive and dynamical. The

development of descriptive spatiotemporal models

largely follows the development of spatial and time-

series models, where there is an a priori expectation that

system states (in our case, ls,t) close together in space or

time should be similar to one another. In descriptive

models, this notion is often codified by specifying a

covariance function that decreases as a function of

distance (where distance can be either in space or time).

For instance, the model

ls;t ¼ Xtbþ gs þ ct þ js;t þ es;t ð3Þ

might be used to indicate that the expected number of

animals at location s at time t is a function of a design

matrix Xt at time t (consisting of covariate values, etc.)

and regression parameters b, a purely spatial random

effect (gs), a purely temporal random effect (ct), a

spatiotemporal random effect (js,t), and independent

random error es,t. Statisticians have developed a large

number of approaches to model autocorrelation in

random effects as purely spatial (e.g., geostatistical

models, Gaussian Markov random fields [GMRFs];

Cressie 1993, Banerjee et al. 2004, Rue and Held 2005)

or temporal (e.g., AR[p] processes and ARIMA models;

Box et al. 2008, Prado and West 2010). Similar

approaches can be used to define spatiotemporal

covariance functions (Cressie and Wikle 2011) for the

js,t random effects.

By contrast, dynamical spatiotemporal models at-

tempt to model the mechanism by which the spatiotem-

poral process evolves over time. In spatiotemporal

models for physical processes (e.g., atmospheric pro-

cesses), the evolution of the spatiotemporal process is

largely governed by the laws of physics, which can be

represented with ordinary or partial differential equa-

tions (Wikle et al. 2001, Wikle and Hooten 2010).

Discrete time approximations to such equations can

provide much more meaningful structure than simple

descriptive models, although descriptive model features

can still be used to account for residual spatiotemporal

autocorrelation. In ecology, dynamical spatiotemporal

models have been used to model invasive species spread

(Wikle 2003, Hooten et al. 2007, Hooten and Wikle

2008). Even though invasive species do not necessarily

subscribe to a single succinct law that governs their

spread, physical models for advection–diffusion pro-

cesses are still very useful for describing and constrain-

ing evolution of the spatiotemporal process.

Returning to the problem of estimating animal

abundance, consider a dynamical model for ls,t that

takes on the form

½l jh� ¼ ½l1 jh�P
T

t¼2
½lt jlt�1; h� ð4Þ

where subscripts in this case denote time (so that lt

describes a collection of ls,t values over all spatial

locations for a given time t). With this setup, we require

a model for the initial spatial distribution of ls,1 at the

beginning of the study (i.e., [l1 j h]), and specify a

dynamical, Markovian model for evolution of the

process via [lt j lt–1,h]. For instance, we might consider

a matrix model, e.g.,
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lt ¼Mtlt�1 þ et ð5Þ

where the matrix Mt is possibly a function of covariates

at time t, xt, and (unknown) parameter values h that

describe how animals redistribute themselves over the

landscape from t! tþ1. A variety of processes could be

used to aid construction of Mt, including advection–

diffusion (Wikle 2003) and agent-based models (Hooten

and Wikle 2010). We explore a hybrid of these

approaches that incorporates resource selection via

redistribution kernels in Spatiotemporal abundance

models.

In an ecological context, descriptive models applied

to abundance estimation essentially reflect ideal free

distributions (Fretwell and Lucas 1970), whereby

animal abundance is free to shift to preferable habitat

between time steps, regardless of how far apart such

habitat is from animal abundance epicenters in

previous time steps. Although inclusion of spatiotem-

poral random effects have potential to prevent large

shifts in abundance from time step to time step, such

artifacts may be expected in descriptive statistical

models, especially when survey data are sparse. By

contrast, dynamical models have the capacity to

constrain shifts in abundance from time step to time

step.

Dimension reduction

When spatial models include thousands of locations,

the computational demands involved in fitting full-

dimensional models can be prohibitive. Estimation of

spatial and spatiotemporal models inevitably requires

evaluating the inverse of covariance matrices for

random effects, the calculation of which requires

operations that increase as a cubic function of the

number of locations (Wikle 2010). Although specifica-

tion of sparse covariance matrices or GMRF models can

help reduce the number of calculations required, it is not

always sufficient to obtain a solution in a reasonable

amount of time. In particular, Bayesian analysis of

hierarchical models via Markov chain Monte Carlo

(MCMC) often requires hundreds of thousands of

matrix inversions. Inclusion of a temporal dimension

on top of spatial structure only serves to increase

dimensionality, further increasing computational re-

quirements.

A common approach to this predicament in high-

dimension spatial and spatiotemporal models is to

employ some sort of dimension reduction strategy.

Dimension reduction includes a reduction in the

number of effective random effect parameters as well

as the size of associated covariance matrices that need

to be inverted during estimation. There are numerous

strategies for dimension reduction, but in each we

express a high-dimensional set of random effects (say g
from Eq. 3) as the product of an expansion matrix, K,

and a reduced parameter set a. For instance, we may

write

g ¼ Ka ð6Þ

where the m 3 1 dimensional vector a holds spatial

random effects on a reduced parameter space, and the S

3 m dimensional matrix K maps these reduced

dimension random effects to S-dimensional space. The

consequence of such a formulation is a reduction in

parameter space from S! m, which can greatly improve

computational tractability.

There are many approaches for parameterizing K; for

instance, the rows of K can be specified using any of a

number of orthogonal or kernel basis functions (Wikle

2010), and can potentially include additional parameters

(e.g., kernel bandwidth). Similarly, different possibilities

exist for a. In certain knot-based approaches to

dimension reduction such as predictive process models

(Banerjee et al. 2008), the a are spatially referenced,

while in others (e.g., spectral decomposition) they are

not.

Throughout this study, we focus on a particular form

of dimension reduction that uses kernel convolution

(also termed process convolution; Barry and Ver Hoef

1996, Higdon 1998) to interpolate spatiotemporal

random effects relative to m knots that are distributed

across space and/or time. This allows us to model

spatiotemporal random effects at the knot level, and

since m � S, to markedly improve computational

efficiency. In this case K is simply used to interpolate

across knots, with entries defined as

Ks;m ¼ ws;m=
X

s

ws;m ð7Þ

where

ws;m ¼ ð2pr2Þ�1
exp

�d2
s;m

2r2

 !
ð8Þ

and ds,m gives the Euclidean distance between the

centroid of sample unit s and the location of knot m

(where Euclidean distance is calculated relative to a

geographical projection of the Earth’s surface onto a

two-dimensional map). Alternate kernels are certainly

possible, and would induce alternate covariance struc-

ture. Theoretically, it is possible to estimate optimal

kernel bandwidths (r), and to consider refinements

allowing for anisotropy (Higdon 1998). However, for

the present development, we limit ourselves to the

simple isotropic specification in Eq. 8, and use a rule of

thumb that sets r equal to the distance between nearest

neighbor knots (Higdon 2002). This approach has been

successfully employed for dimension reduction in

applied spatiotemporal settings, such as modeling

ozone concentrations over space and time (Calder et

al. 2002, Higdon 2002). We use two different specifica-

tions for a in subsequent models, depending on whether

we are working with spatial or spatiotemporal random

effects.
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Abundance estimation considerations

Estimation of animal abundance introduces a number

of nuances and important considerations above and

beyond those associated with simply fitting a statistical

model. These considerations differ depending on wheth-

er one selects a purely descriptive or a purely dynamic

model for the evolution of the spatial process. Hybrid

models thus require making important decisions about

all of the following points.

Boundary conditions.—When a mechanistic (dynamic)

model is used to help guide the evolution of the

spatiotemporal process, one must pay attention to the

boundary conditions necessary to fully specify the

solution to systems of partial differential equations

(Haberman 1998). With respect to animal abundance,

boundary conditions specify how animals immigrate and

emigrate across the edges of the study area. For

instance, the dynamic matrix model formulation in Eq.

5 could be expanded to include separate consideration of

movement within the study area and movement across

boundaries

½lt jlt�1; h� ¼Mtlt�1 þMb
t l

b
t�1 þ et

where the superscript b denotes cells along the boundary

of the study area (Cressie and Wikle 2011, Section 6.3.2).

It is possible to model discretized fluxes across

boundaries in hierarchical models (Wikle et al. 2003),

and such extensions will be necessary in certain

applications (for instance, when estimating abundance

of migrating animals). However, for the present

application, we make the simplification that immigra-

tion and emigration from the study area are zero. This is

both for clarity of presentation, and because a previous

analysis (Ver Hoef et al. 2014) of our focal seal

population suggested that total abundance was relative-

ly constant in the study area while surveys were being

conducted.

Demographic closure and choice of link function.—The

rate at which the target population increases or

decreases due to mortality and births may help guide

selection of an appropriate spatiotemporal statistical

model. For instance, invasive species often spread by

both range extension and increasing abundance in

previously occupied sites. As such, related spatiotempo-

ral models have often included a Malthusian growth

parameter (Wikle 2003, Hooten and Wikle 2008) to

allow abundance to increase over the course of the

study. On the other hand, if the population is stable

while the study is being conducted, use of a population

closure assumption (a conservation of mass property)

may help to stabilize estimation and to provide a single

estimate of abundance (as opposed to a sequence of

time-referenced estimates). This notion is perhaps easier

stated than implemented, however. First, it is difficult to

implement such a restriction in purely descriptive

statistical models (e.g., using a log-Gaussian Cox

process formulation such as Eq. 1). Second, a log-link

function for ls,t can also make this constraint difficult to

enforce in dynamic models. For example, it is a simple

matter to enforce
P

sls,t¼
P

sls,tþ18t, but this constraint
alone will lead to expected population increases in the

case of range contraction, or expected population

decreases in the case of range expansion if ls,t is

modeled in log space. Dynamic models for spatiotem-

poral count data have largely been specified in log space

(e.g., Wikle 2003, Hooten and Wikle 2008); in these

studies, we expect inclusion of a Malthusian growth

parameter to help balance out expected population

decreases during range expansion. We examine several

approaches for inducing a conservation of mass

property (see Spatiotemporal abundance models), and

also investigate whether this seemingly innocuous

modeling choice (the form of link function for ls,t) has
ramifications for abundance estimation.

Spatiotemporal extrapolation.—If we were simply

interested in making inferences about factors that

influence variation of counts in times and places where

sampling occurred, the model specified in Eq. 1 might

suffice, and be all we would need to describe how the

mean abundance intensity ls,t varies in time and space.

A simple descriptive model for ls,t might include habitat

effects and spatiotemporal autocorrelation, several

forms of which can be implemented in a generalized

linear mixed-modeling framework (Ross et al. 2012).

However, since we are concerned with estimation of

total abundance, we must also make inferences about

how ls,t varies in times and locations where we do not

sample.

The standard procedure for generating abundance

estimates from hierarchical models is to use posterior

prediction to simulate abundance in unsampled areas,

and to combine these with known counts from sampled

areas (Ver Hoef 2008, Johnson et al. 2010) to generate

an estimate of total abundance. This formulation is

attractive in that it includes a finite population

correction; if the entire study is sampled and all animals

are detectable, abundance is known with certainty.

Unfortunately, generating posterior predictions over

space and time is not without its perils. In addition to

the usual caution of not extrapolating past the range of

observed data, inclusion of descriptive spatial structure

(e.g., via conditionally autoregressive models) can

sometimes lead to spuriously high predictions of

abundance in locations that are near edges of the study

area (edge effects; Ver Hoef and Jansen 2007) or in

locations with large gaps in spatial coverage (Conn et al.

2014). Although alternate posterior estimators can help

(e.g., the Varian predictor induced by the linex loss

function; Ver Hoef and Jansen 2007), there seems to be

a clear need for tailoring the complexity of spatiotem-

poral models (particularly descriptive models) to match

the richness of the data set. This is especially the case

when using a log-link function; as prediction error

increases, estimates of abundance are likely to increase

as well, simply because the error distribution is right-
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skewed (Ver Hoef 2008). As such, it is important to

conduct simulation exercises and analyze test data sets

to help establish the robustness of particular model

structures in yielding robust and defensible abundance

estimates.

SPATIOTEMPORAL ABUNDANCE MODELS

We consider several different parameterizations for

descriptive and dynamical models and examine their

performance in analyzing simulated and real data sets.

Additive space–time (AST) formulation

The first approach we describe is a simple descriptive

model for ls,t that includes additive spatial and temporal

structure (i.e., omitting space–time interactions). To

induce this structure, we modify Eq. 3 as

ls;t ¼ Xs;tbþ gs þ ct þ es;t:

The implication of this additive construction is that the

temporal random effect ct will lead to uniform increases

or increases in log abundance over the entire landscape.

This formulation may not be realistic for many

dynamical animal populations, but may still be useful

in cases where resources remain relatively constant,

dynamics are governed primarily by birth–death pro-

cesses, and/or survey data are sparse. A similar

formulation was adopted by Ver Hoef and Jansen

(2007) to estimate abundance of harbor seals.

We model spatial structure by distributing knots

across the landscape and imposing a process convolu-

tion model for gs as in Eq. 6. In this case, the random

spatial effects, a, represent weights associated with each

knot location, and are given independent Gaussian prior

distributions. For ct, we specify an RW2 prior distribu-

tion, which is a second-order Markov random walk

time-series process (Rue and Held 2005). This formula-

tion imposes a smoother temporal trend in log of latent

abundance than would a first-order Markov random

walk (or RW1) process. We describe a Bayesian

implementation of this model in Appendix A.

A spatiotemporal process convolution (STPC) model

The next model we implemented shares many

similarities with the AST model, but allows for

spatiotemporal interactions. Also a descriptive (as

opposed to dynamical formulation), we start with the

same general structure and observation model as, i.e.,

given by Eqs. 1 and 2. However, in this case, we write

log of abundance intensity as a function of a single

spatiotemporal effect, js,t

l ¼ Xbþ jþ e:

We will write the j as a function of spatiotemporal

parameters on a reduced dimensional space associated

with m knots placed across the landscape, such that

j ¼ La:

Using this setup, there are mT ak,t random effects (one

for each knot and time step), and L is a sparse (ST 3

mT ) matrix, whose nonzero elements consist of rear-

ranged entries from the K matrix. We allow the ak,t
parameters to change smoothly over time by imposing

an RW2 prior on fak,1, ak,2 . . . ak,Tg for each knot k.

This is a conceptually similar approach to that used by

Calder et al. (2002) and Higdon (2002) to describe

space–time structure in ozone concentrations, and is

described further in Appendix A.

Resource selection model

We implemented a novel spatiotemporal model

incorporating resource selection as a dynamical process.

Our rationale was that if the quantity and quality of

available habitat change over time, animals should be

able to select areas of higher quality, subject to

movement constraints. We followed the general struc-

ture for dynamical models for ls,t presented in Eq. 4

(with a subtle modification to improve computational

tractability; see Appendix A) and model latent abun-

dance at the beginning of the study using a descriptive

formulation

l1 ¼ X1b1 þ gþ e1

where g are modeled using a process convolution

formulation as in the AST model and the 1 subscript

indicates covariates and parameters specific to the first

time step of the study. For future time steps, we let latent

abundance redistribute itself according to the weighted

distribution commonly used in resource selection

applications (cf. Patil and Rao 1978, Lele and Keim

2006, Johnson et al. 2008). In typical resource selection

studies employing use–availability designs, ecologists are

interested in explaining variation in an animal’s use of

spatial locations relative to the set of spatial locations

that were available to them. In a discrete-space use–

availability setting, use of the weighted distribution

implies that the probability of transitioning from sample

unit a 2 S at time t� 1 to sample unit b 2 S at t is

wab
t ¼

wb;tua;bX
s

ws;tua;s

: ð9Þ

This probability consists of two components: the relative

suitability of sample unit b relative to other sample units

at time t (ws,t; often expressed as a function of habitat

covariates), and the relative connectivity of locations a

and b, ua,b.

Practically, the ua,b compose a redistribution kernel in

absence of habitat selection, and can be represented with

a bivariate distribution. For instance, modeling ua,b

using a bivariate Gaussian distribution with diagonal

covariance structure is indicative of isotropic, diffusive

movement in absence of a gradient in habitat quality.

According to this approach (which we use throughout

the study):
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ua;b } Normal
�

dða; bÞ;r2
d

�
ð10Þ

where d(a, b) specifies the Euclidean distance between

the centroids of sample units a and b. For all examples in

this study, we used the following steps to calculate ua,b:

(1) Set ua,b¼0 for all sample units b that do not intersect

with a circle that has a radius of three sample units

symmetric about the centroid of sample unit a (see Fig.

1). (2) For remaining cells, calculate ua,b as in Eq. 10,

using centroids of cells a and b to calculate d(a, b).

This approach is useful computationally, in that the

(S 3 S ) matrix u is sparse and is made up of just nine

different numeric values. Our specification of three

sample units was initially developed for anticipated use

with spotted seal data; in particular, examination of

satellite telemetry records indicated that the probability

of spotted seals moving .3 sampling units (75 km) in a

given day was quite low. The width of the redistribution

kernel will likely need to be revisited in different real-

world applications, as it is linked to both the area of

relative sample units and the dispersal propensity of the

species being modeled.

The other component of the transition probabilities in

Eq. 9 is ws,t, which specifies the suitability of sample unit

s at time t relative to other sample units. In the present

development, we specify a log-linear model for ws,t,

where

logðwtÞ ¼ Xtb

letting habitat covariates (but not regression parame-

ters) vary over time. In contrast to purely descriptive

models for ls,t, we do not include an intercept in this

model, as it cancels out of Eq. 9.

Specifying a model for wab
t gives us a means to apply

resource selection ideas to guide evolution of the ls,t.
For instance, abundance at time t in a location s is a

function of both (1) latent abundance that was in sample

unit s at time t � 1 that remained in s, and (2) latent

abundance in sample units near s that transitioned into s

between t and t þ 1. However, we have yet to specify a

complete model for how such transitions work. In the

present application, we set

lt ¼Mtlt�1 þ ct þ et

as a specification we will refer to as open-population

resource selection (OPRS). Note that for the OPRS

model, the elements of the transition matrix Mt are

simply composed of the transition probabilities wab
t : As

with the AST and STPC models, we still use the

specification in Eq. 1 to relate lt to observed counts.

Since ls,t is modeled in log space, the OPRS specification

means that transitions are specified relative to the

natural log of abundance intensity. We attempt to

compensate for the artifactual effects of range contrac-

tion and expansion on OPRS modeled abundance by

including a time-specific random effect, ct, which we

model using an AR(1) formulation; AR(1) is an

autoregressive model used in time-series analysis. In

theory, it would be possible to also consider a closed

population analogue of this model where transitions are

modeled on the real (as opposed to the log) scale, but it

would be difficult to include Gaussian error in this case

because abundance intensity must be strictly positive.

We leave development of such a model to future

investigation.

A closed-population ideal free (CPIF) model

The OPRS implementation provides a possible

approach for implementing a pseudo-closure assump-

tion, but may be too limiting when animal dispersal is

either leptokurtic or ‘‘fast’’ in relation to the time step of

the model. As another approach for constraining

expected abundance to be constant over time, we

consider a closed-population descriptive (ideal free)

model where abundance is reallocated to sample units

at each time step proportionally to habitat suitability. In

this case, we depart from the general formulation of Eq.

2. Instead, we consider the model

½N;N;x; h jC; o� } ½C jN; o;x�½x j h; o�½N jN;x�½h�: ð11Þ

In particular, we model the counts C as arising from a

binomial sampling process:

Cs;t ; binomialðNs;t; pstÞ

where pst is the fraction of the sample unit s that is

surveyed at time t and is assumed known (see Discussion

for possible adaptations to modify pst for incomplete

detection). We model abundance in each sample unit s at

time t, Ns,t as

N1;t;N2;t; . . . ;Ns;t

� �
; multinomialðN; pÞ

where

FIG. 1. A visual depiction of the process used to select cells
that were ‘‘available’’ in spatiotemporal abundance models
incorporating resource selection. We set ua,b values (relative
connectivity between sample units a and b) to zero for all
sample units b that did not intersect with a circle that has a
radius of three sample units symmetric about the centroid of
sample unit a (dark-gray shaded cell). Light gray cells indicate
sample units for which ua,b . 0.
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pi;t ¼
expðxi;tÞX

s

expðxs;tÞ
:

We express habitat preference (xs,t) values using a log-

linear formulation that includes spatiotemporal auto-

correlation

xt ¼ oþ Xtbþ jt þ et:

Here, o denotes offsets accounting for possible differ-

ences in the size of sample units; by convention, we do

not include an intercept in the regression part of the

model, as it is not identifiable. As in the spatiotemporal

process convolution model, we include temporally

evolving spatiotemporal random effects jt by convolv-

ing bivariate normal kernels where the kernel weights

change according to an RW2 process (see Appendix A

for further details).

COMPUTING

We developed custom-built MCMC samplers in the R

programming environment (R Development Core Team

2013) to compute posterior summaries for the models

described in Spatiotemporal abundance models. Mathe-

matical details of these samplers, including full condi-

tional distributions and prior distribution specifications,

are provided in Appendix A. We developed an R

package, ‘‘STabundance,’’ which includes all functions,

scripts, and data sets to recreate simulation and spotted

seal example analyses in this paper. This package is has

been archived and published (Conn 2014; active releases

available online).6

GENERIC SIMULATION STUDY

Simulation design

In order to examine the utility of each of our proposed

modeling approaches, we conducted a small factorial

simulation study, which varied by the type of abun-

dance-generating model (three levels) and the amount of

sampling effort (two levels). Each simulation involved

sampling and analysis of animal abundance over a 20 3

20 grid for 20 time steps (e.g., Fig. 2), and was

conducted using the following sequence of steps: (1)

simulate spatiotemporal variation in a hypothetical

habitat covariate across a landscape, (2) simulate

spatiotemporal animal abundance across the simulated

landscape according to the specified data-generating

structure, (3) simulate transect placement and transect

counts across each landscape and time step, and (4)

conduct Bayesian inference with each of our estimation

models (AST, STPC, OPRS, CPIF).

We now briefly describe each of the enumerated steps

in turn. A fuller description is provided in Appendix B.

Generating a spatiotemporal habitat covariate.—For

each simulation, we used a 30 3 30 grid for configuring

habitat composition. We induced spatiotemporal varia-

tion in a single habitat covariate via dynamic process

convolution (Calder et al. 2002, e.g., Fig. 2).

Abundance-generating models.—We used three differ-

ent models to generate spatiotemporal count data from

simulated transect surveys. These included (1) a closed-

population model with restricted dispersal (CPRD), (2)

a closed-population model with unlimited dispersal

(CPUD), using the previously defined CPIF structure,

and (3) an open population with restricted dispersal

(OPRD).

The OPRD model used the CPRD structure to

generate data, but on a larger grid (i.e., 30 3 30) than

was used for analysis (i.e., 203 20). By contrast, CPRD

and CPUD used a smaller, 20 3 20 grid (centered in the

middle of the 30 3 30 grid) to simulate abundance. In

effect, the OPRD-generating model allows abundance to

shift in and out of the area being surveyed, while CPRD

and CPUD do not. For each generating model,

simulations were configured such that animals had

preference for intermediate values of the habitat

covariate (see Appendix B).

Simulating transect surveys and animal counts.—At

each time step of simulation, transects were simulated as

straight, vertical lines across the entire study area,

beginning at randomly selected grid cells along the

southern terminus (see e.g., Fig. 2). Each transect thus

covered 20 grid cells, and we configured simulations

such that transects covered 5% of each grid cell they

passed through. Transect placement was re-randomized

at each time step. Following selection of the grid cells

and times where sampling occurred, we drew animal

counts from a Poisson distribution at times and

locations where sampling was conducted

Cs;t ; Poissonð0:05ks;tÞ:

Estimating abundance from simulated data.—Depend-

ing upon simulation configuration, we used anywhere

between one and four estimation models (see Appen-

dix B) to estimate animal abundance for each data set.

These included AST, CPIF, OPRS, and STPC (for

further detail on these models and prior distributions

used, see Appendix A). Each model was provided with

the spatiotemporal covariates used in abundance

generation for use in the linear predictor of each

estimation model. Following completion of all simu-

lation runs, we tabulated proportion relative bias,

coefficient of variation (CV), and mean squared error

of abundance estimates. Calculations were performed

slightly differently depending on whether simulation

and estimation models were open or closed. For

instance, for three of the estimation models (AST,

OPRS, and STPC), there were separate posterior

distributions of abundance for each time step. To

produce a single, ‘‘best’’ average estimate of abun-

dance (N̄) over the whole time frame, we used

numerical optimization to solve for the N̄ that

minimizes6 https://github.com/pconn/STabundance/releases
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" #

where N̂
ðmÞ
t is a posterior realization of abundance at

time t (e.g., at the mth iteration of the Markov chain)

and E is expected value. This approach seeks to

minimize Bayes risk with a squared error loss function.

For further information on estimator performance

calculations, see Appendix B.

Generic simulation results

Results of generic simulations indicated that the

posterior mean for animal abundance produced by the

four different spatiotemporal estimation models (AST,
CPIF, OPRS, and STPC) were relatively unbiased (Fig.

3, Appendix B: Table B2). There was evidence for a
small (,3%) positive bias for the OPRS model, while

other estimation models had bias at or near zero. Mean

squared error favored the STPC model over the other

FIG. 2. An example of one simulation iteration, whereby (A) a generic habitat covariate is simulated across a hypothetical
landscape and allowed to evolve over time, (B) animal abundance (number of individuals) is simulated conditional on the simulated
habitat covariate and an assumed formulation for spatiotemporal dynamics, (C) transect surveys counting individual animals are
simulated over the landscape (here, transects were assumed to cover 5% of each grid cell transversed), and (D) animal abundance is
estimated via a spatiotemporal statistical model. Each column depicts results for a given time step (t; each simulation used 20 time
steps). In this particular simulation, abundance was simulated according to the closed-population resource selection (CPRS)
specification, while estimation was conducted assuming a spatiotemporal process convolution (STPC) model. Each simulation is
given as a 20320 grid; as simulated landscapes were purely hypothetical, the UTM orientation of the plots is completely arbitrary.
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three estimation models in four out of six design points

examined (Appendix B: Table B2). The CV was

extremely low for the CPIF estimation model (0.01–

0.03; Appendix B: Table B2), which resulted in 90%
credible coverage substantially less than nominal (0.18–

0.89) for many simulation design points. In fact,

coverage was only close to nominal for the CPIF model

when a similarly structured model (CPUD) was used to

simulate the data. Note that credible interval coverage is

nominal whenever the percentage of simulations that

include the true abundance value is equal to the stated

percentage of the credible interval (i.e., a 90% credible

interval should nominally cover true values in 90% of

the simulations). The CV for the STPC model was also

low (0.02–0.06), leading to coverage levels between 0.34

and 0.70. Precision for the AST model was a little lower

(0.03–0.07), resulting in better (but not nominal)

coverage levels between 0.73 and 0.86. Coverage rates

for the OPRS model were close to nominal (0.85–0.92).

EXAMPLE: SPOTTED SEALS IN THE BERING SEA

We demonstrate the utility of spatiotemporal models

for estimating abundance by analyzing count data from

spotted seals obtained from aerial transects over the

Bering Sea during April and May 2012. Conducted by

the U.S. National Marine Fisheries Service (NMFS),

these surveys used thermal imagery to locate seals on ice

(see Plate 1); examination of simultaneous high-resolu-

tion digital photographs provided information on

species composition (for detailed information on survey

methods, see Conn et al. 2014). In practice, a variety of

observation errors (including incomplete detection)

occurred with these data. However, since our main

focus is on studying the behavior of different types of

spatiotemporal process models, we treat counts as if

they were observed perfectly in subsequent modeling

(see Discussion for further consideration of observation

error).

Calibration with simulated data

Before fitting spatiotemporal abundance models to

real data, we first conducted a small calibration exercise

to examine the performance of three different estimation

models (AST, CPIF, STPC) when confronted with

distribution and abundance similar to what we expected

for spotted seals and the exact levels of sampling effort

applied by NMFS in 2012. We did not employ the

OPRS estimation model for this exercise, as computa-

tional expense was prohibitive. Previous analysis of

Bering sea transect counts (Conn et al. 2014, Ver Hoef et

al. 2014) indicated spotted seal abundance is maximized

in sample units with sea ice proportions in the 0.5–0.8

FIG. 3. Boxplots depicting proportion relative bias of animal abundance for different combinations of data-generating model
(closed-population model with restricted dispersal [CPRD], closed-population model with unlimited dispersal [CPUD], or an open
population model with restricted dispersal [OPRD]), sampling effort (one or five transects/time step), and estimation model
(additive space–time [AST], closed-population ideal free [CPIF], open-population resource selection [OPRS], or spatiotemporal
process convolution [STPC]) for generic simulations. The lower and upper limits of each box correspond to first and third quartiles,
while whiskers extend to the lowest and highest observed bias within 1.5 interquartile range units from the box. Outliers outside of
this range are denoted with points. Horizontal lines within boxes denote median bias. Note that the number of simulations for each
boxplot varies by estimation model and number of transects (see Appendix B: Table B1).
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range and near the southern ice edge, and that the

abundance of seals in the survey area is roughly constant

during the time of surveys. Conditioning on covariate

values observed in 2012 (including daily sea ice

concentrations, daily distance from southern ice edge,

and distance from 1000-m depth contour), we construct-

ed models for spotted seal distribution and abundance

(Appendix B). We then used data on the times and

locations where transects were flown to sample each

virtual population, and each of the three estimation

models to conduct posterior inference. Details are

provided in Appendix B.

Spotted seal analysis

Next, we analyzed actual counts of spotted seals

observed on sea ice during aerial surveys over the

eastern Bering Sea between 10 April and 8 May 2012.

During this time period, a total of 29 aerial transects

were conducted over a 767 114-km2 study area (Fig. 4).

An effort was made to distribute sampling effort both

spatially and temporally, but field logistics (in particu-

lar, weather conditions and snow levels at an airstrip on

St. Paul Island, Alaska, USA) precluded flying the

desired number of transects along the southern ice edge.

The frequency of spotted seal counts was much higher

along the southern ice edge (Fig. 4; also see the video in

Appendix D), leading to large variation in spotted seal

counts as a function of day of survey (Fig. 5). After

intersecting our survey effort and observations with a

grid of sample units (Fig. 4) and aggregating data by

day (i.e., using a daily time step), we attempted to fit

three spatiotemporal models to the count data (AST,

CPIF, STPC). Details on model configuration and

execution are provided in Appendix C.

Spotted seal results

Spotted seal simulations suggested a moderate (3–6%)

positive bias for the CPIF and STPC estimation models

FIG. 4. A map depicting on-effort aerial survey tracks (blue lines) overlaid on the 2012 survey area for ice-associated seals in the
Bering Sea. The black-outlined squares are approximately 625 km2 and were used to define individual sample units in
spatiotemporal analyses. Alaska, USA borders the study area to the west, while Russia appears to the east. Also shown is a 1000-m
depth contour (red line), and the United States/Russia Exclusive Economic Zone (EEZ) boundary (orange line), which was used to
construct the eastern edge of the survey area. We relied on data from maximal ice extent in April of 2012 to define the southern
boundary of the survey area. Red points indicate the position of knots used to construct spatial or spatiotemporal random effects
during estimation.
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(Fig. 6; Appendix B: Table B4), with a large (26%)

positive bias for the AST model. Inspection of time

series of AST estimates indicated a spurious negative

trend in abundance up until days 17 and 18 of the study

(the days flights were made into the epicenter of

simulated spotted seal abundance). Restricting estimates

of abundance to these dates resulted in much better

performance of the AST estimator (Fig. 6; Appendix B:

Table B4). Overall, the CPIF estimator had better mean

squared error and precision than the AST or STPC

estimators, with credible interval coverage close to

nominal (Appendix B: Table B4).

Analysis of real-life spotted seal data produced

varying results. Despite varying the input configuration

of the AST model in several ways, we failed to obtain

convergence of this model to a reasonable solution

(estimated precision for se converged toward zero so

that predicted abundance in unsampled cells was

frequently in the millions with many predictions

resulting in numerical overflows). The STPC model also

produced extremely right-skewed posterior abundance

predictions (Appendix C: Fig. C2), and resulted in an

apparently spurious increase in abundance (Appendix C:

Fig. C3; see Discussion).

Compared to the AST and STPC models, the CPIF

structure was much more stable, producing spatiotem-

poral estimates of abundance that mirrored our a priori

expectations, with abundance concentrated along the

southern ice edge and contracting westward as sea ice

diminished in the southeastern quadrant of the study

area (Fig. 7; see also the video in Appendix D). Posterior

predictions of abundance (Fig. 8) suggested that there

FIG. 5. A histogram depicting spotted seal (Phoca largha)
counts by day of the study. There was a large spike in counts on
days 17 and 18 (26 and 27 April 2012, respectively), owing to
flights along the south-central and southeastern ice edge.

FIG. 6. Boxplots depicting proportion relative bias of animal abundance for different estimation models for spotted seal
simulations. Boxplot components are as in Fig. 1. Note that the number of simulations for each boxplot varies by estimation model
(100 for AST simulations, 10 for CPIF and STPC). See Fig. 3 for model abbreviations.
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were approximately 90 000–130 000 detectable spotted

seals in the survey area during the 2012 aerial surveys.

Examination of posterior distributions for habitat

covariates suggested there was a strong quadratic effect

of sea ice concentration on spotted seal densities; spotted

seal abundance was predicted to be the highest in sample

units that were 50% covered by ice, in sample units close

to the 1000-m depth contour, and in sample units close

to the southern ice edge (Fig. 9).

DISCUSSION

In this study, we examined the performance of several

classes of spatiotemporal statistical models when applied

to the specific purpose of estimating animal abundance.

Models varied by the underlying structures allowing

spatiotemporal variation (i.e., descriptive vs. dynami-

cal), whether populations were assumed open or closed

to demographic change, and whether models included

spatiotemporal interactions. Several of the models we

developed were quite novel; for instance, to our

knowledge, this is the first application where a resource

selection model has been embedded into a spatiotem-

poral statistical model for count data (though see Royle

et al. [2013] for an example integrating resource selection

into capture–recapture models). In the real world,

selection of an appropriate statistical model should be

FIG. 7. Time series of sea ice concentration (covariate; top row of panels), survey effort (number of seals counted; middle row),
and mean posterior abundance of detectable spotted seals in the Bering Sea (i.e., uncorrected for availability or visibility bias;
bottom row). Estimates are made with the CPIF estimation model and are presented only for four selected dates (note t ¼ 1
corresponds to 10 April 2012). Each grid cell represents a 253 25-km area; for information on the spatial extent and geographical
location of these estimates, see Fig. 4. For a full time series, see the video in Appendix D.
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guided by a number of factors, including the anticipated

spatiotemporal dynamics of the study population, the

length of the study, and sampling intensity. Selection of

an appropriate model should also depend on the

performance and robustness of available spatiotemporal

models, as inferred from simulation studies and exhib-

ited through case studies.

Results of our generic simulations indicated that

spatiotemporal estimation models were capable of

producing posterior distributions of animal abundance

that were unbiased and highly precise over two different

levels of sampling effort and three different data-

generating models. These are extremely desirable qual-

ities in an estimation procedure for animal abundance.

Unfortunately, credible interval coverage was frequently

too narrow (particularly for the CPIF and STPC

estimation models), especially when the estimation and

data-generating models differed considerably. This is

perhaps not surprising, as our estimates are conditional

on the assumed models. However, it suggests the need to

be careful in taking statements about precision at face

value, as model-conditioned standard errors will almost

certainly be too small to represent the complex real-

world laws governing the distribution and abundance of

animal abundance. Two solutions to this predicament

may be worth considering. First, one could conduct

simulation exercises designed to mimic the real-world

system as closely as possible in order to generate an ad

hoc variance inflation factor. Second, one could conduct

multi-model inference (e.g., using Bayesian model

averaging; Hoeting et al. 1999; Hooten and Hobbs

2015) to potentially remove some of the most problem-

atic aspects of conditioning on a single model.

Simulations revealed a large amount of variation in

requisite computing times for spatiotemporal statistical

models (Appendix B), with the AST model (including

descriptive, additive spatiotemporal variation) being

much faster than other approaches. The two models

allowing spatiotemporal interactions via dynamical

process convolution (STPC and CPIF) were somewhat

slower, but still allowed us to obtain sufficient MCMC

realizations in a reasonable amount of time. The

resource-selection model (OPRS), however, took sub-

stantially longer, even after expending considerable

effort to improve computational speed via a disturbance

implementation of the Kalman filter (Durbin and

Koopman 2002; see Appendix A). This is likely because

the OPRS model requires that one update latent

abundance for each sample unit and time step (dimen-

sion ST ) at every MCMC iteration. By contrast, the

AST, STPC, and CPIF specifications often only require

updates be made at time and locations where sampling

occurs; abundance at unobserved locations can be

generated via posterior prediction (see Appendix B).

As such, the computational demands required to

integrate resource selection into spatiotemporal abun-

dance models may be too onerous for many real-world

applications (at present). For instance, trial runs with

spotted seal data indicated that execution times would

likely be ;40 times slower with the OPRS model than

STPC or CPIF. Faster run times could have been

achieved by modeling resource selection among a

smaller number of large sampling units. However, our

feeling was that this approach would have degraded the

resolution and explanatory power of sea ice covariates.

Simulations specifically tailored to spotted seal counts

in the eastern Bering Sea indicated reasonable perfor-

mance of STPC and CPIF model structures, albeit with

a small positive bias. However, the AST formulation

often led to a spurious trend in abundance, and

estimates that were too large. Estimates from the AST

model were much better when confined to 27 April 2012,

the day when a transect was flown over the apparent

epicenter of spotted seal range. However, fitting these

same models to real spotted seal data provided mixed

results. The CPIF model produced reasonable model

results with estimates that by and large met our a priori

expectations (e.g., with spotted seal concentrations

along the southern ice edge that gradually contracted

and moved northward as ice melted). On the other hand,

the AST and STPC formulations, both of which rely on

a log-Gaussian Cox process, resulted in extremely right-

skewed posterior abundance predictions, to the point

where AST results were nonsensical. Our experience

(Ver Hoef and Jansen 2007, Conn et al. 2014) is that

lack of fit in count data, coupled with sparse sampling,

can often cause positive bias in abundance when using

log-Gaussian Cox formulations. In effect, lack of fit will

tend to result in increased variance on the log of

abundance intensity, which translates into positive bias,

since abundance effects are modeled in log space. It

FIG. 8. Posterior predictions of cumulative spotted seal
abundance in the eastern Bering Sea between 10 April and 8
May 2012 as produced by the CPIF model. Note that this
prediction does not account for incomplete detection.
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might be possible to decrease lack of fit by employing

additional modeling constructs above and beyond the

Poisson distribution, such as zero inflation (Agarwal et

al. 2002, Ver Hoef and Jansen 2007) or negative

binomial models. However, spotted seal data are already

sparse, and inclusion of additional structures would

require an even greater number of parameters to be

estimated. Another possible solution, as suggested by

Ver Hoef and Jansen (2007), is to generate a point

estimate that minimizes a linex loss function (Varian

1975). However, this puts the analyst in the unenviable

position of having a point estimate that is potentially on

the far left side of the posterior distribution. By contrast,

going with a model such as CPIF presents no such

complications.

The models developed and compared in this study are

not intended to be definitive regarding the superiority of

different types of spatiotemporal models (e.g., descrip-

tive vs. dynamical). Each of the models we implemented

included subjective modeling choices, and it could easily

be argued that further work on customizing components

of individual models (e.g., by including additional

spatiotemporal structure or including such structure at

a different stage of the modeling hierarchy) would have

influenced relative model performance. Rather, we

intend our comparison to help guide ecologists through

some of the many modeling decisions and possible

frameworks analysts must consider when constructing a

spatiotemporal model to estimate animal abundance.

That said, there appear to be some real advantages in

employing a population closure assumption when it is

reasonable to do so. First, it can prevent spurious trends

in abundance estimates, particularly near the beginning

or end of the time series. Second, one can place a scale

prior ([N ] } 1/N ) on abundance. This is important, as

Link (2013) recently showed that other prior choices

sometimes resulted in improper posterior distributions

in augmented data applications. We note that the CPIF

FIG. 9. (A) Posterior distributions and (B) mean relationships for the relationship between covariates and spotted seal
abundance (log scale) from CPIF model. Covariates include distance from the southern sea ice edge (Edge), proportion of the
sample unit covered with sea ice (Ice conc), and distance from the 1000-m depth contour (Shelf ), and included a quadratic effect of
ice concentration (Ice conc2) and a square-root effect of distance from sea ice edge (Sqrt(Edge)). Posterior distributions shifted to
the left of zero in panel (A) are indicative of negative effects of a covariate on abundance, while shifts to the right are indicative of
positive effects on abundance. Panel (B) shows the actual effects of each covariate on relative abundance, calculated using the
average value of the other covariates across space and time (e.g., when plotting effects of sea ice concentration, we used the average
value of Edge and Shelf ). For instance, a sample unit with a sea ice proportion of 0.5 and average values for Edge and Shelf is
predicted to have roughly twice the density of spotted seals as would a sea ice proportion of 0.25 or 0.8.
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model could be generalized to relax the population

closure assumption by modeling abundance at different

time steps using a superpopulation formulation (as with

the Schwarz-Arnason parameterization of the Jolly-

Seber model; cf. Schwarz and Arnason 1996).

For clarity of presentation, we did not attempt to fully

model observation errors that are present in the seal

transect data. For instance, the count data do not

account for all seals because some seals are not available

to be detected (i.e., are in the water), thermal imagery

misses some seals, and there is some species misclassi-

fication. As such, spatiotemporal estimates presented in

this study are for demonstration only, as they do not

reflect animals unavailable for sampling. Conn et al.

(2014) developed observation models to account for

these types of detection errors, where the offset term (o

in Eq. 1) was used to handle differences in grid cell size

and detection probabilities that are less than one.

However, inclusion of species misclassification is more

involved and computational demands are considerably

greater (Conn et al. 2013). Integrating such observation

models with spatiotemporal process models is a subject

of current research, and is ultimately what will be needed

to produce absolute abundance estimates with realistic

measures of precision. We expect that future modeling

efforts using an extended data set will also provide more

cohesive estimates, since later surveys (i.e., in 2013) had

greater coverage in the southwestern quadrant of our

study area.

The methods developed in this study bear some

resemblance to the family of so-called N-mixture

modeling approaches for plot-based sampling (Royle

et al. 2004). For example, Chandler et al. (2011)

proposed a class of models for estimating animal density

from repeated plot-based samples that allowed the

number of animals observed on the study area to

change over time; however, their approach assumes that

animals are associated with a given sample unit

throughout the study, and that temporary emigration

out of the sample unit is responsible for variation in

counts. As such, their approach is more useful when

animals are associated with specific home ranges, as

opposed to the case we consider here, where habitat

itself can be dynamic and where animals can move

across the landscape.

This study represents an initial probing of the

effectiveness of different types of spatiotemporal models

for abundance estimation. Each of the estimation

models considered was configured in what seemed to

us to be a sensible manner, but there is certainly future

opportunity to investigate these choices in a more

rigorous fashion. For instance, the spacing and place-

PLATE 1. A spotted seal (Phoca largha) basking on sea ice in the eastern Bering Sea. The spatial distribution of ice-associated
seals can change markedly during spring surveys due to convection and contraction of seasonal sea ice, making them ideal subjects
for spatiotemporal statistical modeling efforts. Photo credit: Michael Cameron.
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ment of knots for process convolution could have

ramifications for estimator performance. Optimal choic-

es are likely a function of both the quality and quantity

of count data available; for a related example in the

context of predictive process modeling, see Finley et al.

(2009). Similarly, reported computing times could likely

be decreased with greater effort at the development stage

(for instance, coding some of the more computationally

intensive calculations in a lower-level language). Our

present investigation focused only on a single type of

spatial and spatiotemporal structure (spatial convolu-

tion), and others (e.g., GMRFs, predictive process

models, geostatistical models) are worth investigating.

Other dynamical process formulations are also certainly

possible, including cellular automata (Hooten and Wikle

2010) and anisotropic diffusion (Wikle et al. 2001).
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