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Abstract
Although many studies demonstrate lake warming, few document trends from lakes with sparse data. Diel

and seasonal variability of surface temperatures limit conventional trend analyses to datasets with frequent
repeated observations. Thus, remote lakes, including many high elevation lakes, are underrepresented in trend
analyses. We used a Bayesian technique to analyze sparse data that explicitly incorporated diel and seasonal var-
iability. This approach allowed us to estimate lake warming in a region of limited knowledge: high elevation
lakes (> 2100 m ASL) of the Southern Rocky Mountains, U.S.A. The analysis allowed for inclusion of lakes with
few repeated measurements, and observations made before 1980 when more intensive lake monitoring began.
We accumulated the largest dataset of high elevation lake temperatures analyzed to date. Data from 590 high
elevation lakes in the Southern Rocky Mountains showed a 0.13�C decade−1 increase in surface temperatures
and a 14% increase in seasonal degree days since 1955. This result is lower than other regional and global esti-
mates of lake warming; however, it is similar to other high elevation lake studies. Our approach can be applied
to other understudied regions, increasing our overall understanding of the effects of climate change on lakes
and their temporal dynamics.

Surface temperature is an important feature of lakes, with
physicochemical and ecological implications. Surface tempera-
ture influences lake mixing regimes (Kraemer et al. 2015a;
Michelutti et al. 2016) and the propensity for thermal stratifi-
cation (Rempfer et al. 2010). Greater surface temperatures
allow stratification to develop earlier and last longer
(Crossman et al. 2016). These effects can increase stability of
the water column, limiting mixing generated from wind or
nocturnal convective cooling (Butcher et al. 2015; Sahoo et al.
2015). While warmer surface temperatures can accelerate oxy-
gen production in the photic zone, oxygen solubility is
inversely related to temperature so less oxygen is taken up
from the atmosphere. Reduced mixing enforced by warm sur-
face temperatures also inhibits oxygen transfer to the hypo-
limnion, increasing the likelihood of hypoxia (Wilhelm and
Adrian 2008; Foley et al. 2012; Golosov et al. 2012). Hypoxia
can cause nutrient release from the sediment, leading to algal
blooms when the lake mixes again (Peeters et al. 2002;

Wilhelm and Adrian 2008). Warming also increases microbial
respiration which can increase the CO2 emissions from lakes
that are already an important component of the global carbon
cycle (Cole et al. 2007). Warmer surface temperatures induce
earlier spawning in fish and increase metabolic activity, sea-
sonal growth and trophic interactions by preventing cold-
water organisms from accessing the epilimnion, and may
create a predation refuge for zooplankton (e.g., Martinez and
Bergersen 1991) and fish (e.g., Johnson et al. 2017). Sustained
warming of lake surface temperatures can make the system
less favorable for native species and increase the likelihood of
new species becoming established (Lennon et al. 2001; Rahel
and Olden 2008). Thus, lake surface temperature mediates
complex interactions between physical and chemical factors,
with important implications for biogeochemical cycles and
biodiversity.

The surface of lakes interacts directly with climate and sur-
face temperature responds rapidly and directly to climatic
forcing (Carpenter et al. 2011). Thus, surface temperature is a
relatively easy to measure indicator of the climate’s thermal
influence on lakes (Adrian et al. 2009). Because surface tem-
perature is a fundamental measurement for limnological stud-
ies, historical datasets are available globally (Sharma et al.
2015), and lake surface temperature records have frequently
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been used to document temporal trends in climate-induced
warming of lakes (Table 1). A wide variety of warming rates
has been reported, ranging from < 0.0�C decade−1 to > 1.0�C
decade−1. At the regional scale, some of this discordance may
be a result of differences in land use, and morphometric and
physiographic factors are also important (Adrian et al. 2009;
O’Reilly et al. 2015). Estimates of warming rates from global
studies are more alike (0.20–0.37�C decade−1; Table 1), but a
comprehensive understanding of lake responses to climate is
still lacking (O’Reilly et al. 2015). Uncertainty in lake–climate
responses limits our ability to predict impacts to lakes them-
selves and understand the changing functional role of lakes at
the global scale, including their role in the global carbon cycle
(Tranvik et al. 2009).

A reason for uncertainty about how lakes respond to cli-
mate may be the extremely limited cumulative sample size of
existing studies. The total number of lakes listed in Table 1
represents only about 0.0008% of the ~1.17 × 108 lakes ≥
0.2 ha on Earth (Verpoorter et al. 2014). Although the quan-
tity of lake surface temperature measurements worldwide is
probably vast, decadal scale monitoring studies that have his-
torically formed the basis of lake warming studies are rela-
tively rare (Table 1). Conventional methods for estimating
lake warming rely on standardized and repeated measure-
ments so that site-specific, seasonal, and short-term interann-
ual variation in thermal patterns can be accounted for in
trend estimates. Sustaining such monitoring studies is difficult
so they tend to occur on larger, easily accessed, notable sys-
tems. This limits our inference about lake–climate responses
and does not take advantage of data from shorter term, less
intensive lake temperature studies typical of smaller and
more remote lakes. For example, small, high elevation lakes
are abundant worldwide (Downing et al. 2006; Verpoorter
et al. 2014) and they may respond to climate differently and,
therefore, be warming at different rates than other lakes
(Hauer et al. 1997; Thompson et al. 2005; Winslow et al.
2015), but they are relatively underrepresented in lake–climate
studies (Table 1; Fig. 1). Of the estimated ~11.7 million lakes
globally at elevations above 2100 m (Verpoorter et al. 2014), <
100 have been analyzed for surface temperature trends.

The paucity of studies on high elevation lakes may be
because high elevation lakes can be difficult to access, so sur-
face temperature records are often sparse and difficult to use
for trend estimates. Even with the increased use of advanced
remote sensing technology to evaluate changes in lake surface
temperature (Riffler et al. 2015; Woolway and Merchant
2017), high elevation lakes remain understudied. Further,
remoteness and variable ice-off dates make standardizing tem-
perature measurements to a particular date or even time of
day difficult. However, because the ice-free season is brief and
variable, small differences in sampling date among years can
have marked effects on observed surface temperature and
trend estimates. These typically small and shallow lakes
can also exhibit diel temperature fluctuations of ≥12�CT
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(Livingstone et al. 1999; Novikmec et al. 2013; Woolway et al.
2016; Martinsen et al. 2018), which can be an order of magni-
tude greater than reported decadal warming rates. Therefore,
sparse datasets that are not composed of replicated

measurements that minimize the influence of diel and sea-
sonal variability have not been used in traditional long-term
trend estimates, as is evident in Table 1. For example, Richard-
son et al. (2017) required data for ≥ 50% of years over the
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period of interest, which encompassed ≥ 15 yr of observations
for each lake, while others only included repeated measure-
ment requirements spanning many years (13 yr minimum,
O’Reilly et al. 2015; 15 yr minimum, Schneider and Hook
2010). Sampling frequency has varied, from at least 1 per year
(Magee and Wu 2017) to hourly (Austin and Colman 2007) in
each lake. Satellite observations can allow for more frequent
measurements than usually available in remote lakes, but
these data are more recent (post 1970s) and can only be col-
lected on larger lakes to minimize the effect of shoreline
(Schneider and Hook 2010). Investigators have usually aggre-
gated data by averaging measurements within weeks, months,
or seasons to smooth out short-term variation (Dokulil 2014;
O’Reilly et al. 2015; Winslow et al. 2015). In some cases,
yearly or greater averages are used (Livingstone 2003; Coats
et al. 2006; Zhang et al. 2014). The aggregated data are then
used to derive trend estimates. In the case of remote lakes with
sparse data, trend analyses would need to incorporate seasonal
and diel effects in a different way than for lakes with more
continuous temperature records.

New quantitative tools to exploit the vast amount of dis-
continuous or unreplicated lake temperature measurements
already collected, and to account for error associated with
short-term temperature variation would improve our overall
understanding of how all types of lakes are responding to a
changing climate. By incorporating diel and seasonal variabil-
ity directly into the analysis, data from lakes sampled irregu-
larly can be included, greatly increasing the number of lakes
that can be examined for the effects of climate change. The
goals of this study were to (1) estimate multidecadal lake sur-
face temperature trends from sparse data across many high
elevation lakes with few repeated observations, and (2) evalu-
ate the hypothesis that high elevation lakes have warmed at a
different rate than other lake types. Bayesian methods were
used to draw on current knowledge of diel and seasonal varia-
tion for inclusion as priors. The approach also accounted for

uncertainty in time of day that measurements occurred
because this is frequently not reported or accounted for in
trend analyses.

Methods
The data for this study were obtained from lakes in the

Southern Rocky Mountains (SRM), which extend about
650 km from northern New Mexico, U.S.A. to southern Wyo-
ming, U.S.A. (Fig. 2). There are over 2500 natural lakes in the
SRM, of which > 95% lie above 2100 m ASL and > 90% are
smaller than 10 ha in surface area (Nelson 1988). As nearly all
natural lakes in the SRM are above 2100 m ASL, this was used
to define “high elevation” so that the largest number of lakes
was included in the study. These lakes are mostly of glacial ori-
gin, and classified as oligotrophic or ultraoligotrophic. Some
are seepage lakes with little to no overland inflow or outflow
(Pennak 1969), but the hydrology of most of them is domi-
nated by runoff from annually variable snowmelt (Hauer et al.
1997). The vast majority of these lakes were historically fish-
less (Hauer et al. 1997), but most that can support fish have
been stocked with salmonids (Oncorhynchus and Salvelinus
spp.; Nelson 1988).

We collected some lake surface temperature data ourselves
but most were gathered from state and federal agencies
responsible for waters within the SRM. We deployed Onset
HOBO temperature loggers in the top 1 m of the epilimnion
that recorded hourly measurements at 11 lakes in the Rawah
Wilderness in northern Colorado (Fig. 2; Table 2) to under-
stand variation in surface temperatures due to time of day,
day of year, and lake area. We also measured dissolved oxygen
concentration 1 m from bottom at the deepest location in
eight lakes in the Rawahs during late August in 2016. The
median area of the Rawah lakes was very similar to those for
the other 590 lakes in the overall dataset. Agency data were
included if the lake was: (1) natural, (2) located above 2100 m,

Table 2. Characteristics of 11 lakes in the Rawah Wilderness Area, Colorado, used to estimate diel and seasonal variation in lake surface
temperature (model 1).

Lake name Latitude N Longitude E Elevation (m ASL) Area (ha) Maximum depth (m)

Big Rainbow 40.693 −105.941 3275 2.4 4.27

Camp 40.695 −105.928 3205 4.8 1.10

Lost 40.719 −105.937 3097 3.7 5.79

Lower Sandbar 40.696 −105.947 3253 1.5 1.68

McIntyre 40.704 −105.961 3242 5.9 10.67

Rawah #1 40.696 −105.953 3250 2.9 2.13

Rawah #2 40.692 −105.951 3275 2.8 3.96

Rawah #3 40.684 −105.956 3316 8.5 35.05

Sugarbowl 40.703 −105.968 3288 3.1 15.24

Upper Camp 40.683 −105.924 3270 15.4 23.47

Upper Sandbar 40.692 −105.946 3263 3.3 7.40

Mean 40.696 −105.947 3249 4.9 9.73
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and (3) temperature values were indicative of ice-free condi-
tions (≥ 4�C; Wetzel 2001; Roberts et al. 2017). Depth at sam-
ples were not available for agency measurements, but were all
regarded as “surface” temperatures. For each lake, we also
recorded latitude (UTM northing), elevation (m ASL), and sur-
face area (ha) because these factors could affect lake surface
temperature. Due to the remoteness of these lakes, other char-
acteristics such as water clarity, lake depth, or residence time,
were not available for most lakes.

Lake surface temperature observations were grouped into
three mutually exclusive and increasingly sparse datasets
(Fig. 3). Due to sparsity of data, individual lakes were not con-
sidered sampling units; rather individual measurements were
considered sampling units. The first dataset included only lakes
with hourly temperature measurements and was used to
develop a model accounting for time of day that temperature
was measured, as well as seasonal and lake size effects (model
I). The second dataset consisted of lakes with point sample
measurements and known sampling time; these data were used
to develop a model to account for effects of elevation, as well as
lake area, on temperature (model II). The third, and largest but
sparsest dataset included lakes with point sample measure-
ments, but sampling time was unknown and there were few
repeated measurements at a given lake (model III). This dataset
and model III were used to estimate the secular warming trend
over the time period of the dataset, accounting for all temporal,
lake size, and elevation effects, and unknown sampling time.

These datasets and models were used in a Bayesian model
framework (Fig. 3). An advantage of the Bayesian approach
over traditional ones (e.g., simple linear regression) is that it
treats unobserved quantities as random variables and complex
processes can be decomposed into a series of conditional sub-
processes. Bayes theorem (Eq. 1) can be expressed as the pro-
portionality of the posterior distribution to the joint
distribution. The posterior distribution is defined as the proba-
bility of parameter values (θ) conditional on the observed data
(y), while the joint distribution is defined as the probability of
the data conditional on the parameters multiplied by the
probability of the prior distribution of the parameters.

P θjyð Þ/P yjθð Þ×P θð Þ ð1Þ

In this manner, the parameter estimates are updated from a
set of observations describing the posterior predictive distribu-
tion of the parameters. This approach also allows for the inclu-
sion of parameters with little to no information (e.g., time of
day temperature was measured), by defining vague priors for
these distributions. The posterior distributions of these param-
eters can then be used as informed priors for subsequent
models (Hobbs and Hooten 2015). A Markov Chain Monte
Carlo (MCMC) method is used to fit the model to data. The
“Monte Carlo” designation estimates properties of parameter
distributions via random samples from a prior distribution,
whereas “Markov Chain” designates that each random sample

DATASET

Eq. 3

MODEL PRIORS

I

II

III

Eq. 4

Eq. 5

Informed

Day, Time, Area 

Day, Time, Area, 
Elevation  

Sampling time

Day, Time, Area 

Vague

Elevation

Year

Estimated surface 
temperature trend

Repeated hourly 
measurements

Point sample 
measurements, 
known sample 

time

Point sample 
measurements, 

unknown 
sample time

Fig. 3. Sequential procedure showing each dataset type and priors used for each model. Priors can be informed or vague. Informed priors are derived
from previous models or dataset used to inform parameter distributions for future models, while vague priors do not arise from previous data.
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is generated from the previous sample in a “chain.” The
MCMC algorithm iterates through each parameter individu-
ally assuming the other parameters are known, turning a com-
plex problem into a series of simpler subproblems. A posterior
distribution that provides inference for the parameter values is
approximated from numerous iterations of sampling through
the MCMC (Van Ravenzwaaij et al. 2016).

We used a sequential procedure, with three models in hier-
archy (Fig. 3). Each model drew on the previous model’s
results as informed priors for parameters which were initially
vague. Later models were updated from the former model’s
means and covariance among each coefficient. Models
increased in complexity, accounting for more uncertainty and
sources of variability in surface temperature. The “rJags” pack-
age in R vs 3.3.2 (R core team, 2017) was used to develop and
fit each model. We checked for convergence of three MCMC
chains through visual inspection and Gelman and Rubin con-
vergence diagnostics (Gelman and Rubin 1992; Brooks and
Gelman 1998) using the “gelman.diag” function of the “coda”
package in R. A Gelman and Rubin diagnostic value above 1.1
indicated lack of fit, while values at or near 1 indicated no lack
of fit. Last, we calculated Bayesian posterior predictive p-values
(PB) of mean and discrepancy: [observation-prediction]2 to
ensure the model accurately gives rise to the data:

PB =P T ynew,θ
� �

≥T y,θð Þjy� � ð2Þ

where, simulations generating a new dataset, T (ynew,θ), from
the predicted posterior distribution are used to determine the
probability that this new dataset is different from the
observed, T (y,θ) | y, in terms of the statistic T. Extreme values
of PB < 0.1 or > 0.9 indicate lack of fit, while values near 0.5
indicate no lack of fit of the model (Hobbs and Hooten 2015).

Model I captured diel and seasonal variation in surface tem-
perature while accounting for lake area, providing informed
priors for these factors in subsequent models. A combined sine
and cosine function was used to model temporal variation:

yit = β0it + β1it sin
Timei
24

×2π
� �

+ β2it cos
Timei
24

×2π
� �

+ β3it sin
Dayi
365

×2π
� �

+ β4it
cos

Dayi
365

×2π
� �

+ β5it Areaið Þ
ð3Þ

where, yit indexes lake surface temperature observation at lake i at
time t, Timei is the hourly value for time of observation at lake i,
while Dayi is the ordinal day of observation at lake i. Area is lake
surface area (ha).We used vague priors for initial β values, assum-
ing normal distributions to allow for all positive and negative
values bounded within the distribution. Data for this model used
temperatures from 11 neighboring lakes with high resolution
continuous measurements to minimize extraneous influence of
site characteristics on surface temperature variability.

Because lakes in the SRM occur over a wide range of eleva-
tions, model II captured this effect on surface temperature,

while incorporating effects of diel and seasonal variation. Lati-
tude was not included in model II or III due to high correla-
tion of the beta estimates (0.994) of latitude and elevation.
Model II used the coefficient means and covariance results
from Model I as informed priors for coefficients β1-β5:

yit = β0it + β1it sin
Timei
24

×2π
� �

+ β2it cos
Timei
24

×2π
� �

+ β3it sin
Dayi
365

×2π
� �

+ β4it cos
Dayi
365

×2π
� �

+ β5it Areaið Þ+ β6it
Elevið Þ

ð4Þ

where, yit indexes lake surface temperature observation at
lake i at time t. Time, Day, and Area are the same as in
model I, and Elev (elevation, m ASL) is added. A vague prior
was used for β6. The data for this model included point sample
observations with known sampling time at a wide range of ele-
vations across the SRM.

Model III is the final expansion of the first two models:

yit = β0it + β1it sin
STi

24
×2π

� �
+ β2it cos

STi

24
×2π

� �
+ β3it sin

Dayi
365

×2π
� �

+ β4it cos
Dayi
365

×2π
� �

+ β5it Areaið Þ+ β6it Elevið Þ+ β7it
Yearið Þ

ð5Þ

where, Yeari is the year of observation at lake i and STi is sam-
pling time for observation at lake i. Because sampling time is
now unknown for this model, we designate it differently than
previous models. ST is estimated from the distribution of
known sampling times in model II, allowing us to incorporate
diel variability even when sampling time was not reported, as
was frequently the case. The coefficient for year (β7it

Þ reports
the average yearly surface temperature trend from 1955 to
2016 across all lakes. Coefficients 1–6 were informed priors
from model II, while β7it

had a vague prior for year. In all
models, we used a normally distributed likelihood.

The posterior distribution of model III was used to derive
quantities of interest while incorporating parameter uncer-
tainty. We derived degree days during the ice-free season as a
more temporally integrative and biologically meaningful mea-
sure of lake warming in a given year:

DD=
X365
1

max
Tmax−Tmin

2
−Tbase,0

� �
ð6Þ

where, DD is cumulative degree days, Tmax and Tmin are
maximum and minimum daily temperatures and Tbase is base-
line temperature. If the mean daily temperature was below
Tbase then DD = 0. Although we used Tbase = 4�C because this
temperature represents ice-free conditions, it is also the mini-
mum temperature for growth of salmonids (Piper et al. 1982),
the predominant fish family in the high elevation lakes of the
SRM. Thus, this measure of warming could also be interpreted
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as an estimate of growing degree days for salmonids. We com-
puted DD each day for the average conditions of dataset III
and summed them across the ice-free period.

Results
The dataset for model I consisted of more than 37,000 hourly

surface temperature observations from the 11 Rawah lakes in
2015–2016. Although these lakes were located within 6 km of
each other, they exhibited a wide range of diel, seasonal, and
interlake variability (Fig. 4), making this a good dataset for defin-
ing distributions of these parameters for use in models II, and III.
In general, smaller lakes showed greater diel variation and higher
peak summer temperatures than larger lakes. Diel variation ran-
ged from < 2�C to > 10�C, while peak summer temperatures ran-
ged from 14�C to 22�C. The lowest peak temperature was
observed in the highest elevation lake, and the highest peak tem-
perature was observed in the lowest elevation lake, indicating
that both lake size and elevation were important determinants of
lake surface temperature.

The dataset for model II consisted of 113 observations from
81 lakes distributed across the SRM in Colorado and Wyoming
(Fig. 2) during 1985–2015. This dataset contributed a more
diverse set of lake elevations (2295–3820 m ASL) than the
dataset for model I, to define distributions for these parame-
ters required for model III. In this dataset, elevation accounted

for > 10�C range in peak surface temperature over this area.
More than half of the data from model II occurred in 1 yr
(1985). Therefore, this dataset did not represent enough inter-
annual variability to include a term for year in model II.

The dataset for model III consisted of 1493 observations
collected from 590 lakes during 1955–2016 (Fig. 5). This repre-
sents the largest dataset ever used to estimate warming rate of
high elevation lakes. The lakes were well-distributed across the
SRM (Fig. 2). Although no temperature measurements were
available from the portion of the SRM extending into north-
ern New Mexico. However, this northern New Mexico region
represents only ~17% of the total area of the SRM (Fenneman
1931) and permanent lakes are rare there (Wright 1964).
Despite the large number of observations, this dataset would
be considered sparse by contemporary standards. For example,
there were no lakes in the dataset with at least one observa-
tion per year for at least 50% of the time series. To meet this
standard, a minimum of 18,290 observations would have been
required. There were only three lakes in the dataset with >
10 yr of continuous repeated measurements (Fig. 5). These
lakes were relatively close together without measurements
available before 1965 or after 2012, and do not represent the
diversity of lake sizes and elevations in the SRM region.

All three models converged and showed no indication of a
lack of fit. For model I, we acquired 25,000 MCMC samples
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and discarded 10,000 as burn-in. The MCMC algorithm for
model I converged with a Gelman–Rubin Diagnostic of 1.0 for
all parameters. The Bayesian p-value of 0.49 for mean and
0.50 for discrepancy demonstrated no lack of fit in model I.
For model II, we acquired 100,000 MCMC samples and
discarded 50,000 as burn-in, and reached convergence
(Gelman–Rubin Diagnostic value of 1.0–1.01 for all parame-
ters). A Bayesian p-value of 0.50 for mean and 0.52 for discrep-
ancy showed no lack of fit. Model III converged while
acquiring 300,000 MCMC samples and discarding 150,000 as
burn-in (Gelman–Rubin Diagnostic value of 1.0 for all parame-
ters), while the Bayesian p-values were 0.50 for mean and 0.51
for discrepancy. Coefficients for diel variation in model III
showed an annual average sinusoidal temperature variation of
2.4�C daily across the SRM, compared to an average diel varia-
tion of 3.3�C in 2015–2016 in the Rawah lakes (model I). The
coefficients for area and elevation in model III showed inverse
relationships with temperature (Table 3).

Our modeling estimated that average annual surface tem-
perature of high elevation lakes in the SRM have warmed at
the rate of 0.13�C decade−1 (95% credible interval [CI]:
0.03–0.23�C decade−1) since 1955. We estimated that during
1955–2016, surface temperatures increased by 0.81�C, and
average regional DD have increased by 14% from 904 DD (CI:
818–991) in 1955 to 1026 DD (CI: 934–1117) in 2016.

Discussion
We found that the average surface temperature of high ele-

vation lakes of the SRM warmed at a rate of 0.13�C decade−1

during 1955–2016. The Bayesian approach we used to deter-
mine this rate alleviates some conventional data requirements
for temperature trend estimation because uncertainties
from diel, seasonal, and interlake variation are explicitly

incorporated. This approach allowed us to estimate warming
in the largest dataset on high elevation lakes compiled to date
and improve the understanding of warming in an underrepre-
sented class of the world’s lakes. If the trend we report con-
tinues, these lakes will be on average 1.11�C warmer by 2100.
This increase in surface temperature will result in an estimated
15% increase in DD in the epilimnion from 2016 to 2100. We
expect that the effects of warming will be mixed for high lake
biota. Generally, surface temperatures will become more favor-
able for Oncorhynchus spp. such as the native Cutthroat Trout
(Bear et al. 2007, but see some exceptions in Roberts et al.
2017), but these warmer temperatures will make these lakes
more vulnerable to invasions by non-native species found at
lower elevations such as the Smallmouth Bass Micropterus dolo-
meiu (McKinley et al. 2000; Sharma et al. 2007). Warmer sur-
face temperatures can also prolong stratification and the
duration of the open water season. These conditions could
exacerbate the hypolimnetic hypoxia that we observed in
some of the study lakes included in this analysis (Tranvik
et al. 2009). Warmer surface temperatures coupled with
reduced oxygen availability in the hypolimnion can create a
temperature-oxygen squeeze for cold-adapted species
(Jacobson et al. 2008; Jiang et al. 2012). The combined effect
of these climate change impacts would reduce habitat for the
non-native and cold-adapted Lake Trout Salvelinus namaycush
and Opossum Shrimp Mysis diluviana, some of the primary
predators, and competitors, respectively, of native fishes in
high elevation lakes of the SRM. The full ecological implica-
tions of warming for the understudied lakes of the SRM need
to be studied further, as diversity in lake types and conditions
of the SRM could present differing biological responses to
future warming.

Our estimate of lake warming is lower than some recent
global average estimates. O’Reilly et al. (2015) estimated a rate
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estimation.
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of 0.34�C decade−1, but that study included just 12 high eleva-
tion lakes out of 235 lakes in the dataset and only the summer
time period. Schneider and Hook (2010) estimated a global
rate of 0.37�C decade−1, but their study from satellite observa-
tions included only lakes ≥ 50,000 ha and for two annual time
periods (July–September and January–March). Our estimate
falls in the middle of estimates for other high elevation lakes
distributed across two continents (0.12–0.25 �C decade−1;
Zhang et al. 2014; Kirillin et al. 2017; Roberts et al. 2017).
Thus, it appears that globally, high elevation lakes have
warmed at a slower rate than other lake types. More inclusive
studies with more lakes are needed to know if this is a general
phenomenon, or an outcome of the limited scope of existing
studies. For example, a number of factors can account for dif-
ferences in lake warming trend estimates, including: biases
induced by data aggregation, time frame of the estimate, geo-
graphic factors, and the particular set of lakes chosen.

Conventional approaches, at least for temperate lakes with
a strong seasonal temperature cycle, usually aggregate data
across an interval within a year to compute an annual average
value and then compute a warming rate across years. Dispar-
ities in data aggregation may explain some of the range of lake
warming rates that we documented in Table 1. Investigators
have variously used monthly, seasonal, and annual averages
to calculate warming rates. However, these different time-
frames can lead to differing warming rates. For example, sum-
mer warming rates can be higher than annual average rates
(Hampton et al. 2008; Roberts et al. 2017), but studies have
not been consistent in the months used to compute “sum-
mer” warming rates. Hampton et al. (2008) and Roberts et al.
(2017) used June–August temperatures, but Schneider and
Hook (2010) and O’Reilly et al. (2015) used July–September
data. Although most of the data for our study were collected
from June through September, it was not necessary to aggre-
gate data over a predefined seasonal period to estimate inter-
annual warming because our models included terms for
seasonality. This is a significant advantage of our analysis

because it allows for more data, including sparse datasets with-
out a consistent annual measurement period, to be included
in long-term analyses.

Regardless of the data aggregation approach, although,
warming trend estimates will depend on the particular years
in the dataset because climate change has not been a linear
process. For example, Efremova et al. (2016) argued that major
lake temperature change occurred beginning in the late 1970s
to the mid-1980s. Likewise, over the last 100 yr, warming
since the 1980s has been unprecedented in some regions
(Woolway et al. 2017). Lake surface temperature trends
encompassing many decades prior to this period would, there-
fore, be lower than estimates beginning closer to the 1980s.
This is evident in Table 1, where four of the longest duration
studies (Livingstone and Dokulil 2001; Kraemer et al. 2015b;
Magee and Wu 2017; Kainz et al. 2017) comprise the majority
of trend estimates of 0.15�C decade−1 or lower. Similarly, the
four studies with the largest trend estimates (≥ 1�C decade−1;
Weyhenmeyer et al. 2007; Schneider et al. 2009; Jeppesen
et al. 2013; Mason et al. 2016) are among the shortest dura-
tion studies. We believe that the six decade time period used
in our study partially accounts for our lower than average
trend estimate. Future analyses may refine trend estimates,
including evaluating possible nonlinearity. Because new data
will accumulate slowly, methods like ours that allow
researchers to go further back in time and incorporate older
but sparser datasets are useful for understanding the temporal
dynamics of the climates effect on lake surface temperatures.

Just as lake warming rate has varied through time, climate
change has not affected all lakes equally. Local influences like
morphometry, elevation, and catchment characteristics inter-
act with regional drivers of climate (Adrian et al. 2009). We
recognize that, in a broader geographic perspective, our defini-
tion of “high elevation” lakes is subjective. The average mini-
mum elevation in the SRM is ~1780 m ASL, so our high
elevation lakes are 320–2169 m above the surrounding low-
land landscape. However, generally speaking, temperate “high

Table 3. Parameter estimates from each model. SD is standard deviation of the estimate. Diagnostic statistics indicated no lack of fit
for any model’s parameters.

Parameter Symbol

Model I Model II Model III

Estimate SD Estimate SD Estimate SD

Intercept β0 1.55 0.056 51.949 6.194 0.808 10.290

Sin(Time) β1 −1.181 0.015 −1.182 0.015 −1.191 0.015

Cos(Time) β2 −0.224 0.015 −0.224 0.015 −0.226 0.015

Sin(Day) β3 −7.951 0.050 −7.960 0.053 −8.381 0.052

Cos(Day) β4 −9.769 0.043 −9.782 0.045 −10.184 0.045

Area β5 −0.067 0.003 −0.060 0.003 −0.042 0.002

Elevation β6 -- -- −0.015 0.002 −0.008 2.944×10−4

Year β7 -- -- -- -- 0.013 0.005

Time ST -- -- -- -- 12.11 0.51

SD model σ 2.06 0.008 5.519 0.400 3.188 0.062
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elevation” lakes tend to have small watersheds and represent
extreme environments with short growing seasons coupled
with long ice cover duration and lower surface temperatures,
relative to their lower elevation counterparts in a given region
(Catalan and Donato-Rondón 2016). A key feature of high ele-
vation lakes in the SRM is that they are distinctly snowmelt
driven systems (Hauer et al. 1997). It appears that melting
snowpack in the spring and perennial ice/snow during sum-
mer have buffered lakes in our region against surface warming,
similarly to other high elevation regions (Zhang et al. 2014;
Sadro et al. 2018). But snowpack in our region is diminishing
and melting earlier, while glaciers are receding (Hoffman et al.
2007; Clow 2010) so lake warming patterns may undergo
another abrupt change in the future.

While the number of published studies on lake warming is
substantial, collectively they represent a tiny fraction of world
lakes. The relatively small sample size of most studies, and non-
random selection of lakes, has probably contributed to the lack of
consensus in lake warming rates. The median number of lakes
included in the 41 studies we report in Table 1 was four. Further,
the available studies are confined to lakes where regular and stan-
dardized monitoring has been possible. Thus, remote lakes,
including many high elevation lakes, as well as small lakes, and
lakes in less developed parts of theworld, are notwell-represented
in the literature. The modeling framework we employed may be
useful in many regions where detailed time series are relatively
rare, but sparser datasets are available for many aquatic systems.
Also, with the advent of satellite observations widely available for
many decades, this approachmay allow better warming estimates
for large lakes globally. Given the importance of warming to
lakes, their biota and even the global carbon cycle, analyses that
can be used to exploit existing, sparse datasets would be valuable
and provide amore complete picture of how all lakes have already
responded to a changing climate, and make better forecasts of
future impacts to a diversity of lakes types.
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