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Abstract

Models for natural non-linear processes, such as popula-
tion dynamics, have been given much attention in applied
mathematics. For example, species competition has been
extensively modeled by differential equations. It is of
both scientific and mathematical interest to implement
such models in a statistical framework to quantify un-
certainty. This study offers an alternative to common
ecological modeling practices by using a bias-corrected
truncated normal distribution to model the observations
and latent process, both having bounded support. Pa-
rameters of an underlying continuous process are char-
acterized in a Bayesian hierarchical context, utilizing a
fourth-order Runge-Kutta approximation.
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1. Introduction

Population dynamics have been extensively studied from
both deterministic and stochastic perspectives in mathe-
matical ecology. This study addresses the need to quan-
tify uncertainty associated with such mathematical mod-
els, highlighting the advantage of a statistical approach.
While there are situations that naturally warrant the use
of discrete models (e.g., matrix models [Caswell, 2001]),
this study focuses on the implementation of continuous
models to describe underlying processes, even when the
corresponding observations may be discrete. We show
that within a hierarchical framework [Berliner, 1996], a
bias-corrected truncated normal data model can be uti-
lized to accommodate observations having bounded sup-
port. In addition, a similar bias-corrected truncated
normal physical process model is introduced to describe
both single-species population growth (Velhurst logis-
tic growth) and interspecies competition (Lotka-Volterra
equations) [Edelstein-Keshet, 1988]. We also utilize a
fourth-order Runge-Kutta (RK4) approximation to the
system of differential equations was utilized in conjunc-
tion with Markov chain Monte Carlo (MCMC) methods
to implement the formal statistical model. While high-
order approximation, such as RK4, is not new to statistics
(e.g., Shoji and Ozaki [1998]; Rumelin [1982]), its imple-

mentation within a hierarchical framework is underuti-
lized.

To illustrate our methods, we use a historical data
set [Gause, 1934] containing population measurements of
Paramecium aurelia and Paramecium caudatum grown
in nutrient medium both separately and together. While
this particular data set has been used in numerous stud-
ies [Pascual and Kareiva, 1996; Leslie, 1957; Edelstein-
Keshet, 1988; Lele et al., 2007], often serving as the poster
child for biological logistic growth models, many previous
studies utilize low-order discretizations, wherein popula-
tion size is exclusively modeled at times coinciding with
those of the observed data. In contrast, we augment the
process so that it can be modeled at arbitrarily small time
increments.

Regarding random variables having positive support,
common practices include log-transformations for use in
Gaussian settings. Specifically, in cases where the data
include zeros, a common but ad hoc approach is to add a
small number so that a log-transformation can be taken.
While these practices are widespread, they often do not
represent the dynamics well; this study offers an alterna-
tive through the incorporation of a bias-corrected trun-
cated normal model.

1.1 The Truncated Normal Distribution

The truncated normal distribution can accommodate
random variables with non-negative support, but a more
appropriate model can be specified by implementing a
bias correction in the truncated normal with a target ex-
pectation. To illustrate the suitability of such a bias cor-
rection, first suppose X ∼ T.N.(µ, σ2), where we desire
E(X) = µ. The actual expectation is not µ however, but
rather

E(X) = µ+ σ
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where b1 and b2 are the lower and upper bounds of trun-
cation, and φ and Φ are the standard normal pdf and cdf,
respectively [Johnson et al., 1994; Horrace, 2005]. That
is, the expectation is not equivalent to the parameter µ,
as desired. However, if we specify X ∼ T.N.(µ − γ, σ2),
where E(X) = µ, then we need only find the bias cor-
recting function γ(µ, σ2, b1, b2) (see Figure 1). This im-
plementation of a bias correction also decreases process
uncertainty, particularly near truncation bounds, as often
appears in data sets and is depicted in Figure 2. Specifi-
cally,
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The expectation in (2) is a complicated nested integral
equation that is analytically intractable, but it can be
approximated numerically.

2. Methods

2.1 Constructing the Process Model

Let dx
dt = h(t,x) be a differential equation that models a

continuous dynamical process x in time t. Such a process
can be well-approximated by the classical fourth-order
Runge-Kutta method (RK4):

xt+∆t = f(xt, θ) (3)

= xt +
∆t
6
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where a1 = h(t,xt), a2 = h(t + ∆t
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is a vector of parameters. The RK4 approximation can
then be embedded within a hierarchial probability model
at the process level. Note that, depending on the value
of ∆t, the process can be approximated to a desired level
of precision. If the process is allowed to be stochastic
at each discretization time t, while ∆t is specified to be
small, then a state-space model with Markov dependence
and an augmented process component results; i.e., xt ∼
[xt|f(xt−∆t,θ)].

Here, f(xt−∆t,θ) is the RK4 approximation to the
Lotka-Volterra model for species competition:
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where the parameter vector θ contains r1, k1, β1, r2, k2,
and β2, the parameters controlling the dynamics of the
system. Specifically, for the ith species, xi is the under-
lying continuous process of population growth, ri is the
growth rate, ki is the carrying capacity, and βi is the
competition parameter. Regarding competition param-
eters, β1 denotes the deleterious effect of species 2 on
species 1, and vice versa. Note that in the absence of one
species, this particular process model defaults to Velhurst
logistic growth of the other species.

2.2 The Hierarchical Representation

To introduce the hierarchical model, we begin with the
model for observations (i.e., likelihood). Let observations
for the process under study at time t be denoted by yt.
Then a probability model can be written for these mea-
surements:

yt ∼ T.N.(xt − γyt
,Σy)b2

b1
, Σy = σ2

yI, (7)

where γyt
is a bias correction such that E(yt) = xt, and

b1, b2 are the lower and upper truncation boundaries, re-
spectively. Note that the truncated distribution accom-
modates measurements with bounded support, such as

the case with all measurements of mass (e.g., population
size).

The data model in (7) is conditional on the second level
in the hierarchy, i.e., the process, xt. Let us adopt the
formulation described above as a model for the process.

xt ∼ T.N.(f(xt−∆t,θ)− γxt
,Σx)b2
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, (8)
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where γxt
is a bias correction such that E(xt) =

f(xt−∆t,θ), and f(xt−∆t,θ) is the RK4 approximation
to the Lotka-Volterra species competition model at time
t.

The latent variables xt can be thought of as state vec-
tors and may occur at a finer temporal resolution than
the data, yt. In other words, if τx, τy are finite sets
of times, |{xt,∀t ∈ τx}| > |{yt,∀t ∈ τy}|, where “| · |”
represents the size of the set. This point is critical for
obtaining a precise approximation to the motivating sys-
tem of differential equations, because in practice we could
choose the set τx to be large enough to attain any desired
precision in the approximation.

The parameter model makes up the third and final level
of the hierarchy, controlling the dynamics of the system
(whence, θ) as well as additional stochasticity (whence,
σ2

x, σ2
y).

θ ∼ T.N.(µθ,Σθ)d2

d1

x0 ∼ T.N.(µ0,Σ0)b2
b1

σ2
y ∼ Inverse Gamma(ry, qy)

σ2
x ∼ Inverse Gamma(rx, qx)

2.3 Model Implementation

The hierarchical model described above can be imple-
mented in an MCMC setting in the usual manner by
analytically identifying full-conditional distributions for
parameters and latent state vectors, and then sampling
from them sequentially. In this case, the truncated dis-
tributions imply nonconjugacy in all parameters and a
Metropolis approach must be taken in the MCMC al-
gorithm. Additionally, although the bias corrections are
functions of xt, they are analytically intractable and thus
must be approximated numerically by defining an objec-
tive function (see below) and optimizing over γ, using
the numerical optimization routine of choice. The robust
Nelder-Mead (1965) method [Nelder and Mead, 1965] was
used for this particular model.

To illustrate the numerical method for the univariate
case, suppose we desire a truncated normal random vari-
able, y, to have expectation µ. Recall that, without a bias
correction, the expectation would be as specified in (1).
Thus, we construct a function γ such that E(y) appears



Figure 1: Effect of bias correction when using truncated normal distribution in hierarchical model. While the
expectation of the normal curve (pink) is equivalent to the parameter µ, that of the left-truncated normal curve
(green) is affected by γ(µ, σ2, b1, b2). The blue curve is a truncated normal distribution with a bias correction that
allows its expectation to be µ.

Figure 2: Effect of bias correction on uncertainty. Assume a truncated normal data model, left-truncated at zero.
The purple area depicts a probability envelope for a data model containing a bias correction; the gold area is that for
a model without a bias correction. Note the shift in the mean and reduction of uncertainty in the purple envelope
near the truncation boundary.



as in (2) and define an objective function Q = (E(y)−µ)2

to be minimized with respect to γ. As needed in the
MCMC algorithm, we can numerically find γ conditional
on µ, σ2, b1, b2. This method is easily generalized for the
multivariate case we are dealing with here.

3. Results

In fitting the model described in the previous section to
data, we actually fit three separate models: One univari-
ate logistic growth model to each of the single-species
data, followed by a competition model using the two-
species data. In this case, since populations were ob-
served both in isolation and in competition, the advan-
tage is that posterior distributions from the single-species
models can be used to inform prior distributions for ger-
mane parameters (i.e., r1, r2, k1, k2) in the two-species
model. This focuses all available power on the estimation
of the additional competition parameters (i.e., β1, β2).
We set ∆t = 1/4, yielding an augmented process with
four times the temporal resolution of the data and a very
precise approximation to the differential equations. For
the two-species case, the MCMC algorithm was run for
20,000 iterations with a burn-in of 2,000.

To assess the model’s capability in situations similar to
the Gause data, the model was evaluated using simulated
data first; the results of this are summarized in Table 1.

Figures 3-6 depict results of the model, applied to
Gause’s Paramecium data, scaled by 1/10. Figure 3
shows the data for single-species logistic growth, over-
laid with the augmented process 95% credible intervals.
With regard to the model fit using the Gause data, Fig-
ure 4 shows posterior distributions for single-species logis-
tic growth rates and carrying capacities. Posterior mean
single-species growth rates (r1 and r2) were 0.685 and
0.886 with standard deviations 0.1786 and 0.4147, for P.
aurelia and P. caudatum, respectively. Here, the prior
distribution [r1] = [r2] = TN(0.5, 1)dr2

dr1
, having trunca-

tion bounds dr1 = 0 and dr2 =∞. Posterior mean single-
species carrying capacities (k1 and k2) were 56.1 and 20.8,
with standard deviations 3.223 and 5.121, for P. aurelia
and P. caudatum, respectively. Here, the prior distribu-
tions [k1] = [k2] = TN(60, 10000)dk2

dk1
, having truncation

bounds dk1 = 0, and dk2 =∞.

Figure 5 shows the data for two-species competition,
overlaid with the augmented process credible intervals,
after using the single-species growth rate and carrying ca-
pacity parameters to inform the two-species priors. Fig-
ure 6 shows posterior distributions for competition pa-
rameters (β1 and β2). Posterior means of the competi-
tion parameters were 2.58 and 0.554 with standard devia-
tions 0.8258 and 0.3134, for P. aurelia and P. caudatum,
respectively. Here, [β1] = [β2] = TN(1, 10)dβ2

dβ1
, having

truncation bounds dβ1
= 0 and dβ2

=∞.

4. Discussion

Regarding the simulated data summarized in Table 1,
note that the posterior variance is reduced for most pa-
rameters in the competition model, as compared to the
single-species cases (the exception being k2). This sug-
gests that the competition data hold additional informa-
tion about the single-species growth parameters. Further,
note that each of the parameters used for simulation is
indeed captured by the model, suggesting that the model
describes the simulated process accurately. Regarding
the Gause data, the overlap in posterior growth rates for
single-species (Figure 4a) provides little evidence of a sig-
nificant difference, although the variability differs. The
fact that the posterior variability of r2 is greater than
that of r1 may seem surprising since the P. caudatum
observations appear to have less spread than the P. au-
relia observations. Perhaps the difference in variability
is due to the fact that P. caudatum initially experiences
a delayed growth relative to P. aurelia, yet P. cauda-
tum appears to meet its carrying capacity earlier than
P. aurelia. Figure 4b suggests that P. aurelia is natu-
rally capable of attaining a larger population size than
P. caudatum in the absence of the other species. Fig-
ure 8 evinces a substantial difference among competition
parameters; given that P. aurelia achieved a larger popu-
lation in competition, it is perhaps counterintuitive that
P. aurelia is affected more negatively by the presence of
P. caudatum than vice versa. One important aspect with
regards to the augmented process is that, similar to pre-
diction uncertainty in geostatistics, the credible intervals
of the augmented process indicate increased uncertainty
at time points farther away from data.

Regarding the methodology of our model, the pro-
posed bias-corrected truncated normal models alleviate
the need for a log-transformation and allow us to model
a non-negative process. It should be noted that both the
process and data models have bounded support, whereas
other studies (e.g., Stein, [1992]) have modeled bounded
data which were assumed to arise from a measurement
model conditioned on a process with real support, ren-
dering no need for a bias correction. The implementation
of a bias correction allows us to specify an appropriate
physical process model with positive support. Further-
more, utilizing ∆t < 1 improves stability of the dynami-
cal system and avoids drawbacks pertaining to the repre-
sentation of dynamics that accompany many analytically
discretized models (e.g., Ricker growth [Turchin, 2003]).
The process augmentation, resulting from ∆t < 1, also
allows our approximation to be faithful to the motivat-
ing continuous dynamical model; that is, as ∆t→ 0, our
model preserves the dynamical properties of the differen-
tial equations. Additionally, in the presence of stochas-
ticity, as ∆t → 0, our model converges to an underlying
stochastic differential process. The incorporation of RK4
for continuous model approximation is useful for empha-
sizing parameter estimation and ensuring that process
uncertainty is focused on model choice rather than model



Table 1: Results from simulated data
Parameter Truth Posterior Mean Posterior S.D. Prior Mean Prior S.D.

Single-Species 1
r1 0.6 0.5889 0.1625 0.5 1
k1 60 60.90 3.713 60 100

Single-Species 2
r2 0.8 0.8293 0.2484 0.5 1
k2 40 41.78 1.956 60 100

Species Competition
r1 0.6 0.7290 0.2038 0.5889 0.1625
k1 60 60.30 3.991 60.90 3.713
β1 2.5 0.8226 0.8272 1 3.162
r2 0.8 0.7422 0.2173 0.8293 0.2484
k2 40 42.10 1.872 41.78 1.956
β2 0.5 0.2500 0.2759 1 3.162

(a) (b)

Figure 3: Paramecium aurelia (a) and Paramecium caudatum (b) observations with augmented process 95% credible
interval overlaid.

(a) (b)

Figure 4: Posterior distributions for single-species logistic growth rates (a) and carrying capacities (b), with prior
distribution overlaid.



Figure 5: Mixed P. aurelia and P. caudatum observations with augmented process 95%credible intervals overlaid.

Figure 6: Posterior distributions for competition parameters, with prior distribution overlaid.

approximation.
It should be noted that, as Gause’s Paramecium data

are counts, a Poisson data model would also be reason-
able. We have found that this yields similar results in
terms of the posterior process and parameters. Although
the Poisson specification addresses the discrete nature
of the data in this case, it imposes a distinct mean-
variance relationship. The truncated normal specifica-
tion introduced here also implies a mean-variance rela-
tionship, yet it is more flexible than the Poisson due to
its two-parameter model formulation. Furthermore, the
model we use here is also more robust in that it allows
for linear transformations of the data (e.g., scaling) as
well as various types of data; for example, the proposed
model is applicable to data having bounded continuous
support (e.g., rainfall data; percent quadrat cover; plant
basal area). Application to such examples is the subject
of ongoing research.
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