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Abstract. Satellite telemetry data are commonly used to quantify habitat selection, examine animal
movements, and delineate home ranges. These data also contain valuable information concerning dens,
nests, roosts, and other central places that are often associated with important life history events and may
exhibit unique characteristics; however, using satellite telemetry data to study central places is complicated
by common nuances like locational error and animal movement. We coupled a novel modeling framework
that accounts for these nuances with an Argos satellite telemetry dataset to examine the spatiotemporal
behavior associated with harbor seal haul-out sites on Kodiak Island, Alaska, USA. The methodology
incorporates an observation model that accommodates multiple sources of uncertainty in telemetry data
and a flexible Bayesian nonparametric model to uncover latent clustering in the telemetry locations. We
also contribute extensions to examine the effect of covariates on site selection and to obtain population-
level inference concerning central place use. Harbor seal haul-out sites generally occurred in inlets and
bays, areas that are isolated from the open water of the Gulf of Alaska. Most individuals selected haul-out
sites that were protected from wave exposure. The effects of bathymetry and shoreline complexity on haul-
out site selection were variable among individual seals, as were the effects of time of day, time since low
tide, and day of year on temporal patterns of haul-out use. As repositories of satellite telemetry data on a
wide variety of species accumulate, so do opportunities for using this information to learn about the loca-
tions of central places, as well as the temporal patterns in their use. The model-based approach we describe
offers a practical and rigorous means for gaining insight concerning these sensitive locations, knowledge
of which is important for the effective management and conservation of many species.
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nonparametric.
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INTRODUCTION

Satellite telemetry data provide an important
source of animal distribution information and
are commonly used to quantify habitat selection

(Johnson et al. 2008b, Johnson et al. 2013), exam-
ine movements (Jonsen et al. 2003, Johnson et al.
2008a, McClintock et al. 2012), and delineate
home ranges (Kie et al. 2010). These data also
contain information concerning another key
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aspect of an animal’s habitat use, namely the
behavior associated with central places, or loca-
tions that are used repeatedly through time such
as dens, nests, roosts, and rendezvous sites
(Anderson and Lindzey 2003, Knopff et al. 2009,
Brost et al. 2017). As repositories of satellite
telemetry data on a wide variety of species accu-
mulate, so do opportunities for using this infor-
mation to learn about the locations of central
places and the temporal patterns in their use. Yet,
nuances like locational error (i.e., deviations
between the true animal locations and the
recorded telemetry locations) and animal move-
ment require careful consideration in such appli-
cations (Hooten et al. 2017). In this paper, we
couple a novel modeling framework that
addresses these challenges with Argos satellite
telemetry data to investigate the spatiotemporal
haul-out behavior of a marine top predator, the
harbor seal (Phoca vitulina richardii).

Harbor seals are widely distributed in the tem-
perate and arctic waters of the Northern Hemi-
sphere (Scheffer and Slipp 1944). Harbor seals
regularly leave the water and haul out on bea-
ches, intertidal areas, and glacial ice in tidewater
fjords to rest, molt, escape aquatic predators,
give birth, and rear their pups (Ling 1984, da
Silva and Terhune 1988, Thompson 1989, Watts
1992). The locations of haul-out sites may change
seasonally to track available food sources (Mont-
gomery et al. 2007, Cunningham et al. 2009),
although harbor seals exhibit high levels of site
fidelity over months to years and typically return
to the same haul-out sites between at-sea forag-
ing bouts (Harkonen and Heide-Jørgensen 1990,
Thompson et al. 1997, Cunningham et al. 2009,
Womble and Gende 2013).

Knowledge of harbor seal haul-out behavior is
necessary to effectively manage and conserve
this species. Human-caused disturbances can
flush harbor seals from their haul-out sites,
resulting in increased energy expenditure and
potentially decreased fitness (Suryan and Harvey
1999, Jansen et al. 2010, Cordes et al. 2011, Blun-
dell and Pendleton 2015). In particular, the
impact of tourism vessels (i.e., cruise ships) on
hauled-out harbor seals has received much
recent attention (Jansen et al. 2010, Young et al.
2014, Blundell and Pendleton 2015, Mathews
et al. 2016), and mitigation efforts require an
understanding of harbor seal haul-out behavior.

Furthermore, harbor seal population monitoring,
which relies on counts of seals ashore to estimate
abundance, benefits from additional information
concerning when and where seals haul out of the
water (e.g., to estimate and maximize detection
probability during aerial surveys; Boveng et al.
2003, Small et al. 2003, Ver Hoef and Frost 2003).
Although harbor seal haul-out behavior has been
studied via direct observation (e.g., Cordes et al.
2011), remote locations and harsh conditions
often inhibit extensive field investigations. In
Alaska, for example, current knowledge concern-
ing the location of haul-out sites is limited to aer-
ial surveys conducted during August and
September (Boveng et al. 2003, Small et al. 2003,
Ver Hoef and Frost 2003). Existing satellite
telemetry datasets provide a practical means for
learning about harbor seal haul-out behavior
throughout the full annual cycle, without the
expense of conducting additional fieldwork.
We examined an Argos satellite telemetry

dataset, collected from harbor seals monitored
near Kodiak Island, Alaska, USA, to understand
the spatial distribution of haul-out sites used by
individuals, as well as the temporal patterns in
haul-out use. We use a general model-based
approach that rigorously accommodates multiple
sources of uncertainty in telemetry data while
simultaneously uncovering latent clustering rep-
resentative of central places (Fig. 1; Brost et al.
2017). Ancillary behavioral data (e.g., accelerom-
eter data) are further incorporated into the model
to improve location estimation and quantify tem-
poral patterns in central place use. Here, we
extend the modeling framework to also examine
the effect of covariates on haul-out site selection
and to obtain population-level inference concern-
ing haul-out use. Our study simultaneously
offers insight into harbor seal haul-out behavior,
provides important methodological advance-
ments, and demonstrates how satellite telemetry
data are useful for studying spatiotemporal pat-
terns in central place use by marine and terres-
trial animals.

METHODS

Harbor seal telemetry data
Harbor seals were captured near haul-out sites

on Kodiak Island, Alaska (Fig. 2), and equipped
with satellite-linked depth recorders (SDRs;
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Wildlife Computers, Redmond, Washington,
USA) during 1994 and 1995. Seals were sedated
with a mixture of ketamine and diazepam
administered intramuscularly, or with intra-
venous diazepam, and transmitters attached to
the mid-dorsal surface using quick-setting epoxy
as described by Lowry et al. (2001). The SDRs
transmitted to Argos receivers onboard polar
orbiting meteorological satellites, a system that
uses the Doppler effect for geopositioning. The
Argos least-squares positioning algorithm
assigns each telemetry location to one of six qual-
ity classes based on the number of transmissions
received during a satellite pass. In order of
decreasing accuracy, the location quality classes
are 3, 2, 1, 0, A, and B. The location quality
classes have different error patterns and magni-
tudes, and some exhibit an x-shaped error distri-
bution that has greatest error variance along the
NW-SE and NE-SW axes (Costa et al. 2010,

Douglas et al. 2012, McClintock et al. 2014, Brost
et al. 2015, Buderman et al. 2016). Argos location
errors are often >10 km in magnitude, and in
some cases >100 km (Costa et al. 2010, Brost
et al. 2015), distances that exceed the typical
extent of harbor seal movements (Frost et al.
2001, Lowry et al. 2001, Cunningham et al. 2009).
Locations obtained within 24 h of tagging were
removed to mitigate tagging effects. All remain-
ing locations were used in the analyses described
below (e.g., no a priori filtering to exclude loca-
tions containing potentially large error).
The SDRs included a conductivity sensor that

determined when the device was wet (low resis-
tance) vs. dry (high resistance). These ancillary
behavioral data were used as a proxy for haul-
out use. In other words, instances when the
device was dry indicate the individual was out of
the water at a haul-out site when the location
was recorded, whereas locations collected while

a.) b.)

Fig. 1. Simulation demonstrating the signal of central place behavior in telemetry location data (gray closed
circles). Because satellite telemetry devices record sequences of animal locations, repeated use of a site yields
multiple telemetry locations collected at that site. Consequently, clusters of locations in mapped telemetry data
are important indicators of a central place. (a) When telemetry location error is small (i.e., the observed telemetry
locations are near the true animal locations), clusters of locations (large red open circles) are conspicuous and
central places can be easily identified visually or by using a series of user-specified time and distance thresholds
(Anderson and Lindzey 2003, Knopff et al. 2009). (b) When telemetry location error is large, a more sophisticated
methodology is required because clusters are poorly defined and the number and location of central places are
highly uncertain. Both figures are based on the same sequence of true locations, but vary in the magnitude of
added locational error.
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the device was wet indicate the individual was at
sea. The devices were programmed with a delay
(10 consecutive readings at 45-s intervals) to pre-
vent spurious wet/dry state transitions

associated with splashing on a haul-out or short
dry periods experienced by the sensor while a
seal was surfaced in the water. Therefore, the
wet/dry data reliably indicate a harbor seal’s

Fig. 2. Posterior distribution of li(t) (red gradient) for 12 harbor seals telemetered near Kodiak Island, Alaska
(a); brighter red corresponds to higher posterior probability. Gray segments of shoreline either have very low or
no posterior probability of haul-out use. The inset in the top right shows the location of Kodiak Island and inset
(a) (red box) within the state of Alaska, USA (light gray). Boxes in (a) reflect the location of insets (b–e) where
high posterior probability of li(t) occurs. The posterior distribution (and posterior probabilities) for each individ-
ual harbor seal is presented in Appendix S4.
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haul-out status. Although the transmitters were
also equipped with pressure sensors for measur-
ing dive depth, these data were not used to
determine haul-out status. Tags were pro-
grammed to pause transmissions after an indi-
vidual was hauled out for 6 h, but otherwise
operated continuously (i.e., not duty-cycled).

Statistical notation
Let sic tð Þ � si;c;x tð Þ; si;c;y tð Þ� �0

represent the pair
of coordinates for an observed telemetry location
collected at time t 2 T, where i indexes an indi-
vidual harbor seal (i = 1, . . ., N) and c indexes
Argos location quality class (c ε{3, 2, 1, 0, A, B}).
Also let liðtÞ � ðli;xðtÞ; li;yðtÞÞ

0
be the coordinates

for the corresponding latent haul-out site. The matri-
ces Si and Mi comprise the locations of telemetry data
and haul-out sites, respectively, for individual i (i.e.,
Si � sic tð Þ; 8tf g and Mi � li tð Þ; 8tf g). We denote
the ancillary behavioral data as yi(t), where yi(t) = 0
indicates the telemetry device on individual i was wet
at time t and thus the harbor seal was at sea, and yi(t)
= 1 indicates the device was dry and the individual
was at a haul-out site. We also denote the spatial
domain within which haul-out sites can exist as S
(e.g., the shoreline).

Haul-out site location estimation
We estimated haul-out site locations using a

hierarchical model consisting of two general
components, an observation model and a process
model (Brost et al. 2017). The observation model,
which accounts for potentially complex teleme-
try error structures and animal movement, was
formulated as

sicðtÞ� NðliðtÞ;RicþUiðtÞÞ;with prob: piðtÞ
NðliðtÞ;R

~

icþUiðtÞÞ; with prob: 1�piðtÞ :
�

(1)

In Eq. 1, an observed telemetry location
arises from a mixture of two multivariate nor-
mal distributions centered at li(t) with vari-
ance–covariance a function of Argos telemetry
measurement error (described by Σic or ~Ric)
and animal movement (described by Ui(t)). The
parameter pi(t) denotes the probability associ-
ated with the mixture components. The matrix
Σic is parameterized to allow for various
telemetry error structures:

Ric ¼ r2
ic

1 qic
ffiffiffiffiffi
aic

p
qic

ffiffiffiffiffi
aic

p
aic

� �
; (2)

where r2
ic quantifies measurement error in the

longitude direction, aic modifies r2
ic to describe

error in the latitude direction, and qic describes
the correlation between errors in the two direc-
tions (Brost et al. 2015, Buderman et al. 2016).
The matrix ~Ric is identical to Σic except for the
off-diagonal elements which are �qic

ffiffiffiffiffi
aic

p
.

When qic = 0, the model specification in Eq. 2
allows for circular (aic = 1) and elliptical
(aic 6¼ 1) error patterns. Alternatively, the error
covariance model allows for the x-shaped error
pattern evident in Argos telemetry data when
qic 6¼ 0, where the mixture component with
variance–covariance matrix Σic describes error
along the SW-NE axis and the mixture compo-
nent with variance–covariance matrix ~Ric
describes error along the NW-SE axis. Note
that telemetry error parameters are indexed by
c, allowing the characteristics of locational
error to vary for each Argos location quality
class. We set pi(t) = 0.5 because the orbital
plane of the Argos satellites changes continu-
ously, and telemetry locations are equally
likely to arise from either mixture component
(i.e., locations have a 50% chance of arising
from either axis of the x-shaped Argos error
distribution; Brost et al. 2015).
When yi(t) = 0 and the harbor seal is at sea,

uncertainty in the location of the haul-out site
(li(t)) is not only a function of telemetry error (Σic

and ~Ric), but also animal movement about the
haul-out site. In this case, we let UiðtÞ ¼ /2

i I;
where /2

i describes the spread of the “home
range” for individual i (li(t) describes its center).
Conversely, when yi(t) = 1, the true but unknown
harbor seal location is the same as the location of
the latent haul-out site. Uncertainty in li(t) is
thus exclusively due to telemetry error (Σic and
~Ric), and we set Φi(t) = 0, where 0 is a 2 9 2
matrix of zeros.
The process model used to estimate the true

but unobserved locations of haul-out sites
(li(t)) consists of a clustering model known as
a Dirichlet process (Brost et al. 2017). We rep-
resent the Dirichlet process as an infinite mix-
ture
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li tð Þ�
X1
j¼1

pijdlij ; (3)

where lij are locations within the spatial domain
S, dlij is a point mass (or “atom”) at lij, pij is the
probability associated with the mixture compo-
nent, and

P1
j¼1 pij ¼ 1. The locations lij and li(t)

distinguish possible haul-out sites from those
actually used by a harbor seal. The lij, for
j ¼ 1; . . .;1, are unique locations and represent
the infinitely many possible sites (e.g., all locations
along the shoreline) where a seal could haul out.
Conversely, the li(t) have a functional interpreta-
tion because they associate a lij to each telemetry
location sic(t); they are locations that are used as a
haul-out site. Put simply, Eq. 3 associates teleme-
try locations with haul-out sites probabilistically:
each mixture component represents the location
of a potential haul-out site, and pij is the probabil-
ity of the location being used by a harbor seal.

The number of mixture components necessary
to generate the observed data can, at most, be the
number of telemetry locations collected for an
individual (e.g., a harbor seal never hauls out at
the same location twice); however, only a hand-
ful of haul-out sites are actually used by any
given seal. Accordingly, the mixture probabilities
are formulated in a manner such that pij
decreases stochastically with increasing index j,
favoring fewer haul-out sites with many loca-
tions per site (Sethuraman 1994, Ishwaran and
James 2001). In other words, as a discrete distri-
bution that has probability mass concentrated
over the first several mixture components, real-
izations of li(t) from the Dirichlet process (Eq. 3)
are generally not distinct, thereby creating clus-
ters of telemetry locations that are defined by
their association to a common haul-out site.
Moreover, the rate of decrease in the pij, and thus
the number of haul-out sites used by a seal, is
data-driven, allowing the complexity of the mix-
ture to be tailored to each individual seal.

We used a custom Markov chain Monte Carlo
(MCMC) algorithm written in R (R Core Team
2015) to estimate the observation and process
model parameters in a unified framework. Mar-
kov chain Monte Carlo is an iterative approach
to obtaining random draws, or samples, from
the posterior distribution of the unknown
parameters (e.g., r2

ic, Ui, and li(t); Gelfand and

Smith 1990). The full model statement, including
prior distributions for all unknown parameters,
is shown in Appendix S1. Inference was based
on 100,000 MCMC samples after convergence
(50,000 samples were discarded as burn-in).

Haul-out site selection
Replication in the values of li(t), for t 2 T, not

only partitions telemetry locations into clusters,
but it also provides a measure of intensity of use.
That is, sites associated with more telemetry loca-
tions receive more use. We relate intensity of use
to the environmental characteristics of the haul-
out sites themselves with a simple and computa-
tionally tractable multiple (or “process”) imputa-
tion procedure (Hooten et al. 2010, Hanks et al.
2011, Scharf et al. 2017).
Conditioned on the locations of all haul-out

sites (Mi), we obtain inference concerning
haul-out site selection using the posterior dis-
tribution

bi; lbjg Mið Þ� 	 / Y
i
½gðMiÞjbi�½bijlb�½lb�; (4)

where the notation [�] represents a probability dis-
tribution, bi is a vector of individual-level parame-
ters quantifying the effect of covariates on haul-
out site selection, lb is a vector of population-level
parameters that describe the mean effect across all
harbor seals, andMi may be transformed by some
deterministic function g(�). Although application
of Eq. 4 is straightforward, it does not account for
uncertainty in our knowledge of li(t). Therefore,
we seek the posterior distribution of bi and lb
given the observed telemetry locations recorded
for individual i (i.e., Si):

bi; lbjSi
� 	 ¼

Z Y
i

bi; lbjg Mið Þ� 	
g Mið ÞjSi½ �dg Mið Þ

(5)

/
Z Y

i

g Mið Þjbi
� 	

bijlb
� 	

lb
� 	

g Mið ÞjSi½ �dg Mið Þ:

(6)

Within a Bayesian hierarchical modeling
framework, we perform the integration in Eq. 6
through composition sampling. That is, we make
inference about the environmental drivers of
haul-out site selection (i.e., bi and lb) by
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conditioning on realizations from the posterior
distribution of li(t) (see below for specific proce-
dural details; Hooten et al. 2010, Hanks et al.
2011). In the context of customary multiple
imputation applications for missing data prob-
lems, the distribution [g(Mi)|Si] is akin to the
imputation distribution (Scharf et al. 2017).

In practice, we constructed a model for wi = g
(Mi), where the function g aggregates Mi to
obtain a counting process of the latent haul-out
sites over raster cells in the spatial support S. The
hierarchical mixture model accommodates zero
inflation and variability among individual seals:

wij � Pois kij
� �

; zij ¼ 1
0; zij ¼ 0

�
; (7)

where wij is the number of times in which raster
cell j is used as a haul-out site by individual i
(i.e., wij ¼

P
t2T 1fliðtÞ¼lijg, where the indicator

function 1{arg} equals 1 if arg is satisfied and 0
otherwise), kij is the intensity of the Poisson dis-
tribution, and zij is a latent indicator variable that
specifies the mixture component from which wij

arises. The mixture component consisting of a
point mass at 0 (i.e., when zij = 0) accounts for
the preponderance of raster cells within S that
are never used as a haul-out site (i.e., more
instances of wij = 0 than expected under the Pois-
son distribution alone; Welsh et al. 1996, Martin
et al. 2005). We model the mean as a function of
environmental characteristics using

logðkijÞ ¼ x
0
ijbi; (8)

where xij is a vector of covariates associated with
raster cell j. The hierarchical specification is com-
pleted with individual- and population-level
models:

bi �N lb;Rb
� �

(9)

lb �N 0;r2
lb
I


 �
; (10)

where Σb and r2
lb
I are the respective covariance

matrices. The multiple imputation procedure
described above is implemented by sampling
gðMðkÞ

i Þ� ½gðMiÞjSi� on the kth iteration of an
MCMC algorithm used to estimate the parame-
ters in Eqs. 7–10, which are subsequently
updated conditional on the value for gðMðkÞ

i Þ
(Hooten et al. 2010, Hanks et al. 2011). See

Appendix S2 for the full model statement, prior
specifications, and details regarding model
implementation.
We investigated the effect of three covariates on

the locations of haul-out sites, namely water depth,
wave exposure, and shoreline complexity. Bathy-
metric data in the form of depth soundings from
NationalOceanic andAtmospheric Administration
Electronic Navigation Charts (nauticalcharts.noaa.-
gov) were used to examine the relationship
between estimated haul-out site locations and dis-
tance to water depth. We converted the depth-
sounding data (points) to a 100-m resolution raster
and calculated the distance from each cell in S to
the closest raster cell with water depth 20 m or
greater (Montgomery et al. 2007). All distances
were calculated as least-cost distance such that
measurements were made exclusively through the
water, thereby reflecting distances “as the seal
swims” (distancemeasurements did not cross land;
Dijkstra 1959). Biological wave exposure, obtained
from ShoreZone aerial surveys (shorezone.org),
was used to determine whether harbor seals
selected certain exposures more than others. Bio-
logical wave exposure is assigned based on the
presence and abundance of coastal biota that have
knownwave energy tolerances (Harper andMorris
2014). We combined the six biological wave expo-
sure categories into two broader classes: protected
(very protected, protected, and moderately pro-
tected categories) and exposed (very exposed,
exposed, and moderately exposed categories). Bio-
logical wave exposure is considered a better index
of exposure than physical wave exposure, which is
based on fetch and coastal geomorphology (Harper
andMorris 2014).We calculated shoreline complex-
ity as the number of raster cells in Swithin 5 km of
a focal cell. Thus, raster cells surrounded by more
circuitous sections of shoreline have higher values
for shoreline complexity. All inference was based
on 100,000MCMC iterations.

Temporal patterns in haul-out use
We obtained individual- and population-level

inference concerning temporal patterns in haul-
out use with a hierarchical model that accommo-
dates the simultaneous analysis of multiple indi-
viduals (Hooten et al. 2016). Specifically, we
modeled the behavioral data using a binary
regression
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yi tð Þ�Bernoulli wi tð Þð Þ; (11)

where yi(t) is the haul-out status of individual i at
time t and wi(t) is the corresponding probability
of being hauled out. We used the probit link to
relate wi(t) to environmental conditions:

wi tð Þ ¼ U ui tð Þ
0
ci


 �
; (12)

where ui(t) are covariates measured at time t, ci
are the corresponding individual-level coeffi-
cients, and Φ is the standard normal cumulative
distribution function. In contrast to the more
common logit link used in logistic regression, the
probit link streamlines computation when fitting
the model using MCMC (Albert and Chib 1993,
Hooten et al. 2003, Dorazio and Rodr�ıguez 2012,
Johnson et al. 2012). The individual-level param-
eters were further modeled using

ci �N lc;Rc
� �

(13)

lc �N 0;r2
lc
I


 �
; (14)

where lc is a vector of population-level parame-
ters that represent the average effect across all
individuals, and Σc and r2

lc
I are the respective

variance–covariance matrices. The full model
statement and details pertaining to model imple-
mentation are provided in Appendix S3.

Previous studies indicated that temporal pat-
terns in haul-out use are influenced by behaviors
(e.g., breeding and foraging), physiological func-
tions (e.g., thermoregulation and molting), and
environmental conditions (e.g., tidal state) that
operate at varying time scales (Boveng et al.
2003, London et al. 2012). Accordingly, we exam-
ined the effect of the following covariates on har-
bor seal haul-out use: the number of hours from
the nearest solar noon (i.e., 13:00 h near Kodiak
Island), the number of hours from the nearest
low tide, the number of days since 15 August,
and the quadratic effect associated with days
since 15 August. 15 August is approximately the
beginning of the annual molting period in Alaska
when harbor seals are most likely to be hauled
out (Calambokidis et al. 1987, Boveng et al. 2003,
Daniel et al. 2003). Tide information was
obtained from the National Oceanic and Atmo-
spheric Administration water level monitoring
stations nearest to the locations of monitored
seals (tidesandcurrents.noaa.gov; Kodiak Island,

Station ID: 9457292 and SW Terror Bay, Station
ID: 9457493). Inference was based on 100,000
MCMC samples from the posterior distributions
after convergence (50,000 samples were dis-
carded as burn-in).

RESULTS

Harbor seal telemetry data
Twelve harbor seals were telemetered between

October 1994 and June 1996, including six males
and six females (Appendices S4 and S5). The age
composition of harbor seals at the time of capture
was seven adults, three subadults, and two pups.
The average duration seals were monitored was
183 d (range: 76, 261 d), the average number of
telemetry locations per individual was 760
(range: 301, 1460 locations), and the average time
elapsed between telemetry locations was 5.8 h
(range: 0, 499 h). On average, 37% of locations
were recorded while an individual was hauled
out of the water (range: 17, 61%).
Overall, 82% of the telemetry locations

belonged to the Argos location quality classes
that typically have the largest locational errors
(classes 0, A, and B). Poor quality location classes
were more likely to be associated with telemetry
locations recorded while a harbor seal was at sea.
For example, 65% of at-sea locations belonged to
Argos location classes A and B, whereas only
35% of locations recorded while a harbor seal
was hauled out of the water belonged to the
same classes. Conversely, 31% of telemetry loca-
tions recorded while a harbor seal was hauled
out belonged to the highest quality location
classes (3, 2, and 1); only 12% of at-sea telemetry
locations belonged to these higher quality
classes.

Haul-out site location estimation
Inference concerning the intensity of haul-out

site use (i.e., li(t)) for all 12 harbor seals is sum-
marized in Fig. 2. High posterior probability of
haul-out use typically occurred in inlets and bays
that were isolated from the open ocean (Fig. 2b–
d). One exception, however, was a subadult
female that had high posterior probability of
hauling out on an islet at the southeast corner of
Kodiak Island, a location adjacent to the Gulf of
Alaska (Fig. 2e). Inference concerning haul-out
use for each individual harbor seal is presented
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in Appendix S4, and estimates for parameters in
the observation model (i.e., parameters related to
Argos telemetry error and animal movement) are
presented in Appendix S5.

Haul-out site selection
Individual-level coefficients indicate a hetero-

geneous response to distance to 20 m bathymet-
ric depth and shoreline complexity; responses
were not consistent among individuals within
sex or age classes (Fig. 3). Inference concerning
lb, the population-level parameters, reflects this
heterogeneity and suggests the individual harbor
seals we examined lacked a common behavior
relative to these two covariates (i.e., 95% credible
intervals overlap 0; Fig. 3).

We were unable to evaluate the effect of wave
exposure on haul-out site selection for most indi-
viduals due to complete separation in the counts
wij and the two exposure categories (Albert and
Anderson 1984, Hefley and Hooten 2015). Com-
plete separation occurred when all instances of
wij > 0 (or wij = 0) for an individual were allo-
cated to one of the exposure categories (protected

or exposed), resulting in Markov chains that
exhibited poor mixing and failed convergence.
Instances of wij > 0 were allocated exclusively to
the “protected” category for six individuals,
whereas all instances of wij > 0 were allocated to
the “exposed” category for one individual
(shown in Fig. 2e). A model of the subset of five
individuals for which complete separation did
not occur indicated that haul-out site selection
was negatively affected by “exposed” shorelines
for three individuals; the remaining two individ-
uals exhibited no effect for this covariate (see
Appendix S6). Furthermore, the average effect of
“exposed” shoreline was negative for these five
harbor seals (95% CI for lb: �4.55, �0.20).

Temporal patterns in haul-out use
The effect of environmental conditions (time of

day, time since low tide, and day of year) on tem-
poral patterns of haul-out use was variable
among the 12 harbor seals we examined (Fig. 4).
A consistent pattern among individuals within
sex or age classes was also not evident (Fig. 4).
Inference for parameters related to day of year

Posterior distribution

 - pup

 - subadult

 - subadult

 - subadult

 - adult

 - adult
 - pup

 - adult

 - adult

 - adult

 - adult

 - adult

µ

-4 -2 0 2

Distance to 20-m depth

-4 -2 0 2

Shoreline complexity

Fig. 3. Individual- and population-level inference concerning covariates examined in the haul-out site selection
model. The top row (blue box) represents inference concerning the population-level parameter (lb) that describes
the average effect across the 12 harbor seals analyzed. The remaining rows show individual-level parameters (bi),
and individual seals are labeled according to their sex and age class. The points indicate the posterior mean, the
thick lines represent the 50% credible interval, and the thin lines represent the 95% credible interval.
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was highly uncertain, and 95% credible intervals
for most individuals included 0. Inference con-
cerning the population-level parameters reflects
the individual-level heterogeneity and shows
that a common effect across individuals was gen-
erally lacking (i.e., 95% credible intervals for lc
overlap 0; Fig. 4), although there appears to be a
weak negative effect for the covariate hours since
solar noon (95% CI: �0.37, 0.04).

DISCUSSION

We combined a previously collected Argos
satellite telemetry dataset with a fully model-
based framework to examine the spatiotemporal
behavior associated with harbor seal haul-out
sites on Kodiak Island, Alaska. We adopted a
recently developed approach to estimate the
location of central places that rigorously accom-
modates large telemetry location error and ani-
mal movement (Brost et al. 2017), but also
contribute extensions to examine the effect of
environmental covariates and obtain population-
level inference during the simultaneous analysis
of multiple individuals. Our methods are general
and can be applied to various types of telemetry
data collected on terrestrial or marine species.

We used a multiple imputation procedure to
relate haul-out site selection to shoreline charac-
teristics (Hooten et al. 2010, Hanks et al. 2011), a
computationally efficient approach that allows
the site selection parameters (i.e., bi and lb) to
reflect uncertainty in the estimated location of
the haul-out sites themselves (Eqs. 4–10). A
model for haul-out site selection could, in princi-
ple, alternatively be specified in the base distri-
bution of the Dirichlet process (i.e., the prior for
lij; Hjort 2010). Such an approach allows habitat
characteristics to directly inform the location of
potential haul-outs using, for example, a point
process that has a spatially heterogeneous inten-
sity function (Aarts et al. 2012, Brost et al. 2015);
however, this strategy has a couple of key short-
comings. As a model on lij, the base distribution
provides inference concerning whether a particu-
lar location is used as a haul-out and thus fails to
distinguish between sites used a single time from
those used repeatedly. Moreover, relatively few
locations are used as a haul-out site by any given
seal (i.e., <10), limiting the number of explana-
tory variables that can be incorporated into a

model of the base distribution (Agresti 2002, pp.
212). Instead, we prefer to model a function of
li(t) (i.e., wij = g(Mi)), a strategy that examines
how much a site is used and provides inference
analogous to that obtained from common species
distribution models (Aarts et al. 2012).
Our analysis couples positional data with

behavioral (wet/dry) data to help inform a model
of haul-out site location estimation. We could
have also formulated a simpler model by exclu-
sively using telemetry locations collected while
harbor seals were hauled out of the water (i.e.,
yi(t) = 1) and uncertainty due to animal move-
ment does not degrade inference; however,
nearly two-thirds of the locations in our dataset
were recorded while individuals were at sea (i.e.,
yi(t) = 0). These “at-sea” locations contain valu-
able information concerning the true location of
the haul-out sites, making it important to incor-
porate both behavioral states using an observa-
tion model (Eq. 1) that explicitly accounts for
animal movement. Other behavioral information,
such as accelerometer data, could also be used to
partition when individuals were using coastal vs.
at-sea resources, or the model can be adapted to
situations when no such ancillary data are avail-
able (e.g., Brost et al. 2017).

Harbor seal haul-out behavior
Almost all existing information concerning the

location of harbor seal haul-out sites in Alaska
has been acquired from aerial surveys that are
typically conducted during the molting season in
August and September (Boveng et al. 2003, Small
et al. 2003, Ver Hoef and Frost 2003, Womble
et al. 2010). Satellite telemetry data, collected
throughout the full annual cycle, provide an
opportunity to learn about the location of haul-
out sites used at other times of year. Our results
suggest that harbor seals favor haul-out sites in
isolated bays and inlets (Fig. 2); however, one
harbor seal in our study used a haul-out site on
an islet adjacent to the open water of the Gulf of
Alaska (Fig. 2e). Locations determined to have
high posterior probability of haul-out use in our
study match the locations of haul-out sites
observed during aerial surveys conducted
between 1993 and 2001 (see haul-out sites 7–10 in
Figure 4 of Small et al. 2003 and Figure 1 of
Boveng et al. 2003), serving as an informal evalu-
ation of the methodology we used.
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We are aware of only one previous study that
examined the relationship between environmen-
tal variables and the selection of haul-out sites by
harbor seals. Montgomery et al. (2007) used
counts of harbor seals obtained from aerial sur-
veys to model terrestrial habitat use in Cook
Inlet, a 20,000-km2 tidal estuary that opens into

the Gulf of Alaska < 100 km north of Kodiak
Island. They found that abundance of harbor
seals was negatively related to distance to Cook
Inlet communities, bathymetric depths of 20 m,
and anadromous fish streams and that harbor
seals tended to use haul-out sites with a rock
substrate. Montgomery et al. (2007) also
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Fig. 4. Individual- and population-level inference concerning covariates examined in the temporal haul-out use
model. The top row (blue box) represents inference concerning the population-level parameter (lc) that describes
the average effect across the 12 harbor seals analyzed. The remaining rows show individual-level parameters (ci),
and individual seals are labeled according to their sex and age class. The points indicate the posterior mean, the
thick lines represent the 50% credible interval, and the thin lines represent the 95% credible interval.
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examined wave exposure but did not find evi-
dence supporting an effect for this covariate. Our
results do not indicate an effect of proximity to a
bathymetric depth of 20 m and show a heteroge-
neous response to shoreline complexity (Fig. 3).
Half of the harbor seals in our analysis exhibited
complete separation such that estimated loca-
tions of haul-out sites only occurred on “pro-
tected” shoreline. This relationship could be
coincidental or reflect selection for “protected”
shorelines. An analysis of the subset of harbor
seals for which complete separation did not
occur revealed that three of five individuals
selected against “exposed” shorelines (see
Appendix S6). The areas in which seals were
monitored for this study are isolated from the
human communities on Kodiak Island and do
not contain substantial variation in shoreline sub-
strate (the majority of shoreline was sedimentary
or of mixed types as determined by ShoreZone
aerial surveys), and data concerning seasonal
variation in prey availability were lacking. There-
fore, we did not examine the effect of communi-
ties, shoreline substrate, or proximity to fish
streams on haul-out use.

Several studies have used counts of harbor seal
haul-out groups to investigate patterns in haul-
out use at multiple temporal scales. At daily time
scales, the highest proportion of seals onshore
are typically observed at times near low tides
when favorable haul-outs are exposed (e.g., sites
isolated from terrestrial predators; Schneider and
Payne 1983, Pauli and Terhune 1987) and during
midday when the air temperature is most con-
ducive to thermoregulation (Stewart 1984,
Calambokidis et al. 1987, Pauli and Terhune
1987; see London et al. 2012 for an exception to
these patterns). At annual time scales, temporal
patterns in haul-out use are influenced by breed-
ing and molting cycles that can be sex- and age-
specific (e.g., adult females nurse pups onshore,
and pups do not molt; Everitt and Braham 1980,
Brown and Mate 1983, Calambokidis et al. 1987,
Huber et al. 2001, Jemison and Kelly 2001,
Boveng et al. 2003, Daniel et al. 2003), as well as
the distribution and availability of prey. Our
results do not show a consistent effect of environ-
mental conditions on haul-out behavior and thus
do not corroborate the conclusions of these ear-
lier studies (Fig. 4); however, haul-out behavior

is known to vary regionally because seals likely
adapt their behavior to local conditions (Simp-
kins et al. 2003). Patterns related to sex and age
class resulting from differences in foraging strat-
egy (e.g., Frost et al. 2001, Hastings et al. 2004,
Carter et al. 2017), for example, were also not evi-
dent in our study.
Our study focused on the telemetry data

available in an important region of the Alas-
kan coastline and included a balanced sex ratio
of harbor seals. The model can be scaled up to
include more individuals and larger spatial
scales when additional data and computing
resources are available; as with all studies,
these steps increase the ability to identify
demographic effects and reach more general
conclusions. Although our analysis concerns a
relatively small subpopulation of harbor seals,
it also provides a solid and intuitive procedu-
ral framework that can be extended to larger
populations of marine or terrestrial animals
that use central places. For example, examining
the central place use of many individuals of a
variety of species would provide inference not
obtainable through traditional space use and
resource selection approaches.

CONCLUSION

Previously, central places were often studied
using portable radiotelemetry (i.e., VHF) equip-
ment to locate animals in the field; however, use
of satellite telemetry has become standard prac-
tice in animal tracking studies, precluding “on-
the-ground” searching as a means for learning
about central places. Nevertheless, satellite
telemetry data contain valuable information con-
cerning these sensitive sites, which in turn can
aid spatial planning for species of conservation
concern (e.g., Cunningham et al. 2009, Womble
and Gende 2013). The model-based approach we
describe offers a practical and rigorous means for
gaining additional insight concerning the spa-
tiotemporal behavior associated with central
places. Future work could focus on incorporating
temporal dynamics in the spatial model for cen-
tral places (e.g., to examine seasonal patterns in
haul-out site locations) or on the development of
a hierarchical Dirichlet process for the concurrent
analysis of multiple individuals.
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