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Abstract.   Satellite telemetry devices collect valuable information concerning the sites visited 
by animals, including the location of central places like dens, nests, rookeries, or haul-outs. 
Existing methods for estimating the location of central places from telemetry data require user-
specified thresholds and ignore common nuances like measurement error. We present a fully 
model-based approach for locating central places from telemetry data that accounts for multiple 
sources of uncertainty and uses all of the available locational data. Our general framework con-
sists of an observation model to account for large telemetry measurement error and animal move-
ment, and a highly flexible mixture model specified using a Dirichlet process to identify the 
location of central places. We also quantify temporal patterns in central place use by incorporat-
ing ancillary behavioral data into the model; however, our framework is also suitable when no 
such behavioral data exist. We apply the model to a simulated data set as proof of concept. We 
then illustrate our framework by analyzing an Argos satellite telemetry data set on harbor seals 
(Phoca vitulina) in the Gulf of Alaska, a species that exhibits fidelity to terrestrial haul-out sites.

Key words:   basis function; Bayesian analysis; data fusion; Dirichlet process; harbor seal; hierarchical 
model; integrated data model; mixture model; nonparametric; Phoca vitulina; temporal dependence.

Introduction

Many animal species return regularly to one or more 
central places like a den, nest, roost, or foraging site. 
Central places can be located by sighting individuals 
during aerial (Montgomery et al. 2007) or ground-based 
surveys (Blakesley et  al. 1992), or by using radio-
telemetry equipment to locate individuals in the field 
(Holloran and Anderson 2005); however, direct obser-
vation may only provide a snapshot of the animal’s 
behavior if surveys are infrequent (Ruprecht et al. 2012) 
and could be altogether impractical when surveys are 
encumbered by remote locations, rugged terrain, or oth-
erwise difficult conditions. We address these issues using 
a model-based approach for locating central places from 
satellite telemetry data.

Satellite telemetry devices collect regular sequences of 
animal locations (Tomkiewicz et  al. 2010), data that 

contain valuable information concerning the sites visited 
over a monitoring period. Repeated use of a site often 
yields multiple telemetry locations collected at that site. 
Therefore, clusters of locations in mapped telemetry data 
are important indicators of a central place (Knopff et al. 
2009).

When deviations between true animal locations and 
the observed telemetry locations are small (i.e., small 
telemetry measurement error), clusters are well-defined. 
Accordingly, central places can be located by identifying 
clusters consisting of some prespecified number of 
telemetry locations collected within a certain distance 
and time frame (Anderson and Lindzey 2003, Knopff 
et al. 2009). However, results are sensitive to the distance 
and time thresholds used (Zimmermann et  al. 2007). 
Moreover, distance thresholds fail when telemetry meas-
urement error is large. Large errors lead to diffuse 
clusters, which, in turn, create uncertainty in the location 
of a central place as well as the composition of the clusters 
themselves. For example, observed telemetry locations 
can plausibly originate from more than one central place 
(i.e., cluster membership is ambiguous), or locations 
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collected at a central place can be confused with locations 
collected during movements away from the site. 
Therefore, a method that accounts for telemetry meas-
urement error is required.

We present a model-based approach for estimating the 
location of central places from satellite telemetry data. 
Our approach incorporates an observation model that 
explicitly accounts for measurement error, and uses a 
mixture model as a device for exposing latent structure 
(i.e., clustering) in telemetry location data. The mixture 
model is specified using a flexible Dirichlet process prior, 
a well-developed Bayesian nonparametric model that 
adapts its complexity to the data at hand. We also 
quantify temporal patterns in central place use (i.e., 
factors affecting when a central place is used) by incorpo-
rating ancillary data related to animal behavior into the 
model; however, we also extend the model to situations 
when no such behavioral data exist. We first apply the 
model to a simulated data set as proof of concept. We 
then illustrate our framework using an Argos satellite 
telemetry data set on harbor seals (Phoca vitulina) in the 
Gulf of Alaska. Harbor seals are central place foragers 
that exhibit fidelity to terrestrial haul-out sites (Lowry 
et al. 2001).

Telemetry Data

The model we propose can be applied to various 
telemetry data types like VHF, GPS, or geolocation 
telemetry. We focus on Argos satellite telemetry data like 
those in our harbor seal data set that were calculated via 
the Argos least-squares positioning algorithm (Service 
Argos 2015). These data require special treatment because 
they exhibit an x-shaped error distribution that has 
greatest error variance along the NW-SE and NE-SW 
axes, a consequence of the polar orbiting Argos satellites 
and error that is largest in the direction perpendicular to 
the orbit (Costa et  al. 2010, Douglas et  al. 2012). 
Furthermore, valid Argos telemetry locations are 
assigned one of six location classes (3, 2, 1, 0, A, and B), 
each of which exhibits different error patterns and 
magnitudes.

In addition to positional data, modern telemetry 
devices often collect ancillary data related to animal 
behavior (Tomkiewicz et al. 2010) that can be helpful for 
partitioning when individuals are actively using a central 
place vs. other resources. The harbor seals in our data set, 
for example, were equipped with satellite-linked depth 
recorders that gathered information pertaining to diving 
behavior. Specifically, we use information from an on-
board conductivity sensor that differentiates when a tag 
is wet (low resistance) vs. dry (high resistance) as a sur-
rogate for central place use. Resistance values ranged 
from 0 to 255, which we converted into a binary indicator 
for haul-out status using a threshold value of 127 (i.e., 
resistance values >127 were categorized as hauled-out). 
The devices were programmed with a delay (10 consec-
utive readings at 45 s intervals) to prevent spurious wet/

dry state transitions associated with splashing on a 
haul-out or short dry periods experienced by the sensor 
while a seal was surfaced but swimming; therefore, these 
wet/dry data reliably indicate when an individual is 
hauled-out on shore (dry) or at-sea (wet).

Model Formulation

Let s(t) ≡ (sx(t), sy(t))′ represent the pair of coordinates 
for an observed telemetry location at time t∈ , and 
�(t)≡ (μx(t), μy(t))� represent the coordinates for a corre-
sponding latent central place. We denote the spatial 
support of central places as ̃  and the ancillary behavioral 
data as y(t). In the case of harbor seals, ̃  represents the 
coastline where haul-out sites can occur and y(t) ∈ {0, 1}, 
where 0 indicates the individual is at-sea and 1 indicates 
the individual is on-shore using terrestrial resources.

Observation model

The observed telemetry locations arise from a process 
that reflects animal movement and measurement error. 
Movement influences the true animal locations, which 
are then observed imperfectly due to the telemetry meas-
urement process. We accommodate various error pat-
terns using a flexible mixture distribution, which itself is 
conditioned on the ancillary behavioral data to accom-
modate movement. First, consider a model for telemetry 
locations collected while the individual is at a central 
place (i.e., y(t) = 1): 

In Eq. 1, an observed telemetry location (s(t)) arises from 
a mixture of multivariate normal distributions with mean 
μ(t) corresponding to the location of a central place, and 
variance-covariance matrices Σ or �̃ that describe 
telemetry measurement error. The matrix Σ is parame-
terized in a flexible manner (Brost et al. 2015, Buderman 
et al. 2016): 

where σ2 quantifies measurement error in the longitude 
direction, a modifies σ2 to describe error in the latitude 
direction, and ρ describes the correlation between errors 
in the two directions. The matrix �̃ equals Σ on the 
diagonal, but the off-diagonal elements are −ρ

√
a. This 

model specification accounts for circular (a = 1) and ellip-
tical (a ≠ 1) errors when ρ = 0, as well as x-shaped error 
patterns evident in Argos telemetry data when ρ ≠ 0.

We model telemetry locations collected while the indi-
vidual is not at the central place (i.e., y(t) = 0) in a fashion 
similar to Eq. 1: 

(1)s(t)∼

{
 (�(t),�), with prob. p(t)

 (�(t), �̃), with prob. 1- p(t).

(2)�=σ
2

�
1 ρ

√
a

ρ
√

a a

�
,

(3)s(t)∼

{
 (�(t),�+σ2

μ
I), with prob. p(t)

 (�(t), �̃+σ2
μ
I), with prob. 1−p(t),
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except the variance-covariance structure in Eq. 3 is aug-
mented by σ2

μ
, a parameter accounting for dispersion due 

to animal movement about the central place. In other 
words, μ(t) and σ2

μ
 define the center and spread of an indi-

vidual’s “homerange.” As in Eq. 1, Σ and �̃ account for 
error in the telemetry measurement process.

The observation model in Eq.  3 represents an inte-
grated likelihood (Berger et  al. 1999). Consider, for 
example, the hierarchical model 

 

where �̃(t) is the true but unobserved animal location. 
The parameters μ(t), σ2, and σ2

μ
 are defined as in Eqs. 1–3, 

but note that the telemetry error structure in Eq. 4 is sim-
plified for the purposes of illustration. In principle, we 
could estimate the true location �̃(t); however, our interest 
here is not the true locations but rather the location of the 
central place, μ(t). Therefore, we treat �̃(t) as a “nui-
sance” parameter and remove it from the likelihood by 
integration (i.e., Rao-Blackwellization; Berger et  al. 
1999): 

Aside from the simplified error structure, the resulting 
marginal distribution is the same as Eq.  3 and has a 
reduced parameter space compared to Eqs. 4 and 5. It 
also yields a Markov chain Monte Carlo (MCMC) algo-
rithm that is typically quicker to converge (Finley et al. 
2015). Models for animal movement where individuals 
are attracted to a particular point are also available if 
inference concerning �̃(t) is desired (Blackwell 2003, 
McClintock et al. 2012); however, these methods require 
the number of central places used by an individual to be 
known.

We define p(t) = 0.5 because the orbital plane of Argos 
satellites changes continuously and observations are 
equally likely to arise from either mixture component. 
The parameters related to measurement error (i.e., σ2, ρ, 
and a) are estimated for different Argos location quality 
classes (Appendix S1). Alternatively, Eq. 2 can be adapted 
to accommodate a continuous metric of location quality 
(e.g., GPS dilution of precision) or the Argos satellite 
telemetry location error ellipse (McClintock et al. 2014).

Spatial process model

As specified in the observation model (Eqs. 1 and 3), a 
telemetry location arises from an unknown (but esti-
mable) central place, μ(t). When considering multiple 
telemetry locations recorded over some period of time, 
the number of unique central places used by an individual 
is potentially >1, but the exact number is unknown. 
Modeling central places is further complicated by pos-
sible multimodality (central places located in disjoint 

areas) and skewness (some central places are close 
together). We resolve these issues (i.e., multimodality, 
skewness, and an unknown number of central places) by 
using a Dirichlet process, a widely used probability model 
for unknown distributions that exhibits an important 
clustering property (Ferguson 1973, Hjort 2010). 
Following the constructive, stick-breaking representation 
of a Dirichlet process (Sethuraman 1994, Ishwaran and 
James 2001), we model μ(t) as a mixture of infinitely 
many components: 

where μj is the location of a potential central place, δμj
 is 

a point mass (or “atom”) at μj, πj is the corresponding 
mixing proportion, and 

∑∞

j=1
πj =1. Because Eq. 7 is a dis-

crete distribution, draws from it are generally not dis-
tinct, thereby inducing replication in the values for μ(t). 
Thus, realizations from the Dirichlet process simultane-
ously provide a value for μ(t) and partition telemetry 
locations with the same value for μ(t) into clusters. The 
distinction between μj and μ(t) is subtle. The μj, for j = 1, 
…, ∞, are unique and represent the location of potential 
central places. The μ(t), on the other hand, have a func-
tional interpretation because they are time-specific and 
associate a μj to each telemetry location s(t). Greater rep-
lication of μ(t), for t∈ , confers higher intensity use of 
the associated central place (i.e., more telemetry locations 
associated with the same central place). Note that, even 
though the Dirichlet process assumes infinitely many 
mixture components (central places), only a finite number 
are used to generate the observed data.

We formulate πj using a stick-breaking process 
(Sethuraman 1994): 

where ηj ∼Beta(1,θ) and θ is a concentration parameter 
that controls the prior expected number of mixture com-
ponents in the Dirichlet process. To describe the stick-
breaking process, begin with a stick of unit length that 
represents the total probability allocated to the infinitely 
many mixture components in Eq. 7. Initially, we break 
off a piece of length η1 ∼Beta(1,θ) from the stick and 
assign this probability (π1 = η1) to the first component, 
μ1. Next, we break off another proportion η2 ∼Beta(1,θ) 
from the remaining length of stick (1 − η1) and assign this 
probability (π2 = η2(1 − η1)) to the second component, μ2. 
As the process is repeated, the stick gets shorter such that 
the lengths (i.e., mixing proportions) assigned to compo-
nents with a higher index decrease stochastically. The 
concentration parameter (θ) controls the rate of decrease.

In practice, we implement the Dirichlet process using a 
truncation approximation (Ishwaran and James 2001). 
For a sufficiently high index J, notice that 

∑∞

J+1
πj ≈0 

because the mixing proportions decrease in the index j. 
Thus, an accurate approximation to the infinite Dirichlet 
process (Eq. 7) can be obtained by letting ηJ =1, resulting 

(4)s(t)∼ (�̃(t),σ2
I)

(5)�̃(t)∼ (�(t),σ2

μ
I),

(6)�
�̃(t)

 (s(t) | �̃(t), σ2
I) (�̃(t) |�(t), σ2

μ
I)d�̃(t)

= (s(t) |�(t), σ2
I+σ

2

μ
I).

(7)�(t)∼

∞∑

j=1

πjδμj
,

(8)
πj =ηj

∏

l<j

(1−ηl),
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in πj = 0 for j = J + 1, …, ∞. The index J is an upper bound 
on the number of mixture components in Eq. 7, not the 
number of components necessary to model the observed 
data.

Temporal process model

We model the ancillary behavioral data using a binary 
probit regression formulated under a data augmentation 
approach (Albert and Chib 1993, Dorazio and Rodríguez 
2012, Johnson et al. 2012). In particular, we introduce the 
parameter v(t) as a continuous, latent version of the 
binary process y(t), which we model as a normal random 
variable with unit variance: 

This expression represents a semiparametric regression 
with mean structure that includes parametric and non-
parametric components (Ruppert et al. 2003, Hastie et al. 
2009). The parametric component consists of a vector  
of time-varying covariates that affect the probability of 
central place use, x(t), and a corresponding vector of 
coefficients, β. The nonparametric component, w(t)′α, is 
described below. Assuming y(t) = 1 if v(t) > 0 and y(t) = 0 
if v(t) ≤  0, the specification in Eq.  9 implies the probit 
regression model 

where Φ is the standard normal cumulative distribution 
function. The auxiliary variable specification in Eqs.  9 
and 10 streamlines computation because the associated 
full-conditional distributions are known and can be 
sampled in closed form when fitting the model using 
MCMC.

We use the nonparametric component of Eq.  9 to 
account for temporal autocorrelation, which often occurs 
in data collected over time from a single individual (e.g., 
y(t)). The nonparametric component consists of a linear 
combination of basis functions evaluated at time t, w(t), 
and the vector of basis coefficients, α (Ruppert et  al. 
2003). The coefficients weight the basis functions to 
produce a smooth process through time, thereby inducing 
dependence among observations. The basis functions are 
arbitrary and should have features that match those of 
the underlying process being estimated. Commonly used 
basis functions include splines, wavelets, and Fourier 
series. The number of functions should also reflect the 
temporal resolution of that process (Ruppert et al. 2003).

Prior distributions

To complete the Bayesian formulation of this model, 
we  specify prior distributions for unknown para
meters.  We  assume �∼ (�β,σ2

β
I), θ∼Gamma(rθ,qθ), 

log (σμ)∼ (μσ,σ2
σ
) , and σ∼Uniform(0,u), with similar 

uniform priors for ρ and a. The lognormal distribution 
for σμ allows prior information concerning animal 
movement and homerange size, if available, to be 

incorporated into the model. We adopt a penalized 
approach to avoid overfitting α by assuming �∼ (0,σ2

α
I) 

and σ2
α
∼ IG(rα,qα) (Ruppert et al. 2003). The prior for μj, 

referred to as the base distribution of the Dirichlet process 
(Hjort 2010), determines where the atoms δμj

 tend to be 
located. We assume �j ∼ f

̃
(S), where S is a matrix con-

taining all of the observed telemetry locations and f
̃

(S) 
represents the density of telemetry locations in ̃ . We 
approximate f

̃
(S) using a kernel density estimator eval-

uated over a rasterized domain ̃ . See Appendix S1 for 
the full model specification and Appendix S2 for details 
regarding model implementation.

Model Application

Simulated data example

We demonstrate our modeling framework when 
parameters are known in a simulated data example. 
Fig. 1 shows 1,000 locations simulated from the model 
using parameters obtained from an analysis of harbor 
seal telemetry data (see Case study below). To simplify 
presentation of results, simulated locations were ran-
domly allocated to Argos location classes 3, 0, and B 
(high-, medium-, and low-accuracy locations). We set 
J = 50 in the truncation approximation to the Dirichlet 
process and modeled dependence in central place use 
with B-spline basis functions (w(t)). B-splines are com-
monly used in semiparametric regression because they 
have local support and stable numerical properties 
(Ruppert et al. 2003). We fit the model using a MCMC 
algorithm written in R (provided in Data S1; R 
Development Core Team 2015).

Inference concerning μ(t), the spatial intensity of central 
place use, is summarized in Fig. 1. Posterior probability is 
concentrated near known central places, and inference is 
more certain for central places associated with many 
telemetry locations (i.e., locations that were heavily used). 
Posterior probability for μj, the location of potential 
central places, is more diffuse than that of μ(t), but still 
generally concentrated near central places (Appendix S3). 
The model recovers parameters related to telemetry meas-
urement error, animal movement, and the temporal 
process of central place use (Appendix S3). Additional 
simulated data examples are presented in Appendix S4.

Case study: harbor seals

To demonstrate our approach with real data, we apply 
our model to Argos satellite telemetry locations collected 
from a harbor seal near Kodiak Island, Alaska (Fig. 2). 
Harbor seals repeatedly use terrestrial haul-out sites 
along the coastline (̃ ), which we represented using a 
100-m resolution raster. Haul-out behavior changes over 
time due to physiological functions (thermoregulation, 
molting, pupping, etc.) and environmental conditions 
(e.g., tidal state) that affect the availability of haul-out 
sites (London et al. 2012). Thus, we evaluated the affect 

(9)v(t)∼ (x(t)��+w(t)��,1).

(10)y(t)∼Bernoulli(Φ(x(t)��+w(t)��)),
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of several temporal covariates on the use of haul-out 
sites: the number of hours since solar noon (13:00 hours), 
the number of hours since low tide, and the number of 
days since August 15 and its quadratic effect. Tide infor-
mation was obtained from the nearest National Oceanic 

and Atmospheric Administration station (Kodiak Island, 
ID: 9457292). We set J = 50 in the truncation approxi-
mation to the Dirichlet process, which greatly exceeds the 
expected number of haul-out sites used by a single harbor 
seal. We modeled the temporal haul-out process using 

Fig.  1.  Simulation of 1,000 telemetry locations (s(t)) arising from three central places (μj). The point symbology associates 
telemetry locations (black and gray numerals; most are smaller gray numerals to reduce clutter) to their corresponding central places 
(white, numbered circles). For example, a telemetry location labeled “1” is associated with the central place labeled “1.” The spatial 
support of central places (̃ ) exists at the intersection of the blue and gray polygons (black line). The posterior distribution of μ(t) 
(red gradient) in the vicinity of the central places is shown in the bottom panels; brighter red corresponds to higher posterior 
probability. Inference concerning the location of central place “3,” which was associated with 608 telemetry locations, is most 
certain. Inference concerning central places “1” and “2,” which were associated with fewer telemetry locations (approximately 200 
locations each), is more diffuse. All inference was based on 20,000 Markov chain Monte Carlo samples after convergence. Note that 
326 simulated telemetry locations are beyond the extent of this map, occurring up to 880 km away.
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B-splines (w(t)) defined at 6-h intervals. In addition to 
allowing for smooth patterns in the probability of 
haul-out use, a basis expansion defined at this interval 
allows haul-out behavior to vary throughout day.

Inference concerning the intensity of haul-out site use 
μ(t) is shown in Fig. 2. Posterior probability is concen-
trated in three regions, generally occurring near clustered 
telemetry locations. The highest posterior probability 

Fig. 2.  Telemetry locations (top panel) of a subadult female harbor seal monitored from 09 Oct 1995 to 04 Jun 1996 in Ugak 
Bay (57.42982° N, −152.5715° W) on the southern coast of Kodiak Island, Alaska, USA. Point symbology reflects whether the 
individual was hauled-out (black points) or at-sea (black crosses) at the time a telemetry location was recorded. Telemetry locations 
were collected on average every 5.7  h (range: 0.0–54.8  h) using an Argos satellite telemetry device. The animal’s position was 
measured on 1,004 occasions, with ≈72% of locations coming from the three least accurate Argos location classes. Approximately 
40% of locations were collected while the individual was at a haul-out site (y(t) = 1). The spatial support of haul-out sites (̃ ) exists 
along the coastline (black line) at the intersection of the blue (water) and gray (land) polygons. The insets show three regions where 
the posterior probability of μ(t) (red gradient) is most concentrated (bottom panels). Brighter red corresponds to higher posterior 
probability. All inference was based on 50,000 Markov chain Monte Carlo samples after convergence. Note that 190 telemetry 
locations are beyond the extent of this map, occurring up to 1,100 km away from Ugak Bay.
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occurs along the northernmost coastline of Ugak Bay, 
indicating this area was most actively used by the indi-
vidual. Similar to the simulated data example, inference 
concerning μj was more diffuse, but resembles that of μ(t) 
(Appendix S5). Parameters in the temporal process model 
(β) indicate haul-out use was highest at times near solar 
noon, during summer months, and at high tide (Appendix 
S5). Inference concerning animal movement (σμ) suggests 
approximately 95% of at-sea locations were within 6.6 km 
of a haul-out site. Parameters related to telemetry meas-
urement error are provided in Appendix S5. All inference 
was based on 50,000 MCMC samples, which required 5 h 
of processing time on a computer equipped with a 
3.4 GHz Intel Core i7 processor.

Discussion

A fully model-based approach rigorously accommo-
dates multiple sources of uncertainty when estimating the 
location of central places from satellite telemetry data. 
Our framework consists of three constituent models: an 
observation model that accounts for telemetry meas-
urement error and animal movement, a spatial process 
model for estimating the location of central places, and a 
temporal process model for quantifying patterns in 
central place use. Unlike other approaches, our model 
does not require user-specified distance or time thres
holds to identify central places (Anderson and Lindzey 
2003), or prior knowledge regarding cluster character-
istics (Webb et  al. 2008). Model implementation is 
unified to properly account for uncertainty in parameter 
estimates.

We demonstrate our model using simulated data 
examples and an application to harbor seals near Kodiak 
Island, Alaska. Harbor seals typically exhibit localized 
movements and regularly return to one or more terres-
trial haul-outs between at-sea foraging bouts (Lowry 
et al. 2001). Our model could also be applied to species 
that display other behaviors. For example, our model 
could be used to examine the location of migratory 
stopover sites or kill sites (Higuchi et  al. 2004, 
Zimmermann et al. 2007, Chevallier et al. 2010); however, 
the ability to model ephemeral locations requires 
telemetry data collected at a relatively high temporal 
frequency.

Observation model

Our observation model consists of a flexible, finite 
mixture distribution (Eqs.  1 and 3) that accounts for 
potentially complex telemetry measurement errors like 
those evident in Argos data (Brost et al. 2015, Buderman 
et  al. 2016). The observation model also accounts for 
movements away from the central place via an integrated 
likelihood (Eq.  3; Berger et  al. 1999). Because meas-
urement error and animal movement are incorporated 
into the observation model, we use all telemetry locations 
to estimate the location of central places, not just those 

with small magnitude errors or those collected while the 
individual is at the central place. Furthermore, we use a 
constrained spatial support for central places (e.g., 
haul-out sites that only occur along the coastline), and 
the subsequent discrepancy between the spatial supports 
of s(t) and μ(t), to simultaneously estimate telemetry 
measurement error (Brost et  al. 2015). In applications 
where central places do not have a constrained support, 
telemetry error must be known a priori or estimated from 
a secondary data source (e.g., Jonsen et al. 2005, Costa 
et al. 2010, Douglas et al. 2012).

Process models

The spatial process model consists of a Dirichlet 
process, a Bayesian nonparametric model that adapts its 
complexity (e.g., the number of central places) to the 
observed data. In conjunction with the observation 
model, the spatial model comprises a Dirichlet process 
mixture model, a highly flexible framework that includes 
a large class of distributions (Hjort 2010). As such, the 
model accommodates multimodal and skewed distribu-
tions, like the distribution of central places.

The Dirichlet process allows for potentially infinite 
clusters as T, the number of observations, approaches ∞; 
however, the number of occupied components cannot 
exceed T and is generally much smaller than T. Con
sequently, a mixture of a finite number of components 
could be used in practice, which is the strategy we adopt 
by using a truncation approximation to produce a com-
putationally efficient algorithm for parameter estimation 
(Ishwaran and James 2001). Other representations of the 
Dirichlet process, like the Chinese restaurant process, do 
not rely on truncations for model fitting (Teh et al. 2006).

Our spatial process model could be adapted to include 
temporal dynamics in the location of central places. For 
example, seasonal patterns in the location of harbor seal 
haul-out sites could be incorporated by modeling the 
central places in a Markovian fashion such that μ(t) is a 
function of previous central places. Adjusting our model 
to differentiate between behaviors would also be nec-
essary if the goal is to examine multiple types of central 
places in a single dataset (i.e., long-term use of a den site 
and short-term use of kill sites). One approach to accom-
modating different behaviors is to formulate the Dirichlet 
process as a hidden Markov model, a commonly used 
method for identifying multiple behavioral states in 
telemetry data (Patterson et  al. 2009, Langrock et  al. 
2012).

We use a semiparametric regression to model the 
temporal process of central place use and account for 
dependence in the behavioral data (Ruppert et al. 2003). 
Telemetry data are generally not equally spaced in time; 
thus, serial correlation would be difficult to model using, 
for example, an autoregressive process. The basis function 
approach that we implement is a flexible alternative 
to  modeling autocorrelated data (T. Hefley et  al., in 
press).
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The basis functions, which are continuous in time, also 
facilitate prediction of animal behavior. For example, 
animal behavior can be predicted at times associated with 
telemetry locations when the positional and behavioral 
data are temporally misaligned (Appendix S6). Our 
model can even be adapted to estimate animal behavior 
when ancillary data are not available (Appendix S6). 
Indeed, prediction is a key advantage of a probabilistic 
framework like the one we present.

Guidance

The joint analysis of multiple individuals can be 
achieved by applying our model to several individuals 
separately, and then combining inference across indi-
viduals to obtain population-level parameters with a 
meta-analysis (e.g., Hartung et  al. 2008, Hooten et  al. 
2016). Alternatively, multiple individuals could be ana-
lyzed concurrently using a hierarchical Dirichlet process 
(Teh et  al. 2006, Hjort 2010). A hierarchical approach 
extends our model by placing individual-specific Dirichlet 
processes under a common prior (another Dirichlet 
process), thereby allowing central places to be unique to, 
or shared amongst, individuals. In either approach, het-
erogeneity among individuals can be accommodated and 
explained through the introduction of demographic 
covariates (e.g., sex and age), and the location of central 
places could be modeled as a function of environmental 
covariates to examine site selection.

Bayesian nonparametric models, like the Dirichlet 
process we use to examine the location of central places, 
have been adapted to analyze time series data, grouped 
data, data in a tree, binary data, relational data, and 
spatial data (Gershman and Blei 2012). This highly flexible 
framework has been widely used in other fields (Rodríguez 
and Dunson 2011), although we are aware of few examples 
from ecology. However, potential ecological applications 
are numerous and include abundance estimation (Dorazio 
et  al. 2008, Johnson et  al. 2013), population genetics 
(Huelsenbeck and Andolfatto 2007), and disease spread 
(Verity et al. 2014), among other applications where the 
goal is to infer latent structure based on empirical data 
(Morales et al. 2004, Brost and Beier 2012).
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