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Abstract. Multiple factors complicate the analysis of animal telemetry location data.
Recent advancements address issues such as temporal autocorrelation and telemetry
measurement error, but additional challenges remain. Difficulties introduced by complicated
error structures or barriers to animal movement can weaken inference. We propose an
approach for obtaining resource selection inference from animal location data that accounts
for complicated error structures, movement constraints, and temporally autocorrelated
observations. We specify a model for telemetry data observed with error conditional on
unobserved true locations that reflects prior knowledge about constraints in the animal
movement process. The observed telemetry data are modeled using a flexible distribution that
accommodates extreme errors and complicated error structures. Although constraints to
movement are often viewed as a nuisance, we use constraints to simultaneously estimate and
account for telemetry error. We apply the model to simulated data, showing that it
outperforms common ad hoc approaches used when confronted with measurement error and
movement constraints. We then apply our framework to an Argos satellite telemetry data set
on harbor seals (Phoca vitulina) in the Gulf of Alaska, a species that is constrained to move
within the marine environment and adjacent coastlines.
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INTRODUCTION

Conservation and management of animal populations

requires knowledge of factors affecting their abundance

and distribution. The locations of animals, coupled with

information about associated environmental character-

istics, can be used to quantify species–habitat relation-

ships. This has stimulated the widespread use of

telemetry devices to collect animal location data

(hereafter telemetry data), which are often analyzed in

a resource selection framework (Manly et al. 2002). The

goal of such analyses is to quantify the probability of

resource (or habitat) use conditional on resource

availability (i.e., selection). Use that is disproportionate

to availability is often equated with preference (Manly et

al. 2002).

Multiple factors complicate the application of re-

source selection methodology. Modern satellite teleme-

try devices, for example, can collect multiple locations

per day. Although such data increase the prospects for

obtaining inference about animal behavior, they often

violate the usual independence assumption of basic

statistical analyses (Aarts et al. 2008, Fieberg et al.

2010). Telemetry measurement error poses another

challenge. Measurement errors, or deviations between

recorded telemetry locations and true animal locations,

can interact with environmental heterogeneity to bias

inferences on species–habitat relationships (Visscher

2006, Johnson and Gillingham 2008, Hefley et al. 2014).

Recent extensions to models for analyzing animal

telemetry data address temporal autocorrelation and

measurement error. Johnson et al. (2008b), for example,

modeled temporally autocorrelated location data using a

weighted distribution that combines a resource selection

function with a movement model. Morales et al. (2004),

Hooten et al. (2010), and Hanks et al. (2011) provide

alternatives to the weighted distribution approach that

also account for temporally dependent data. So-called

‘‘state-space’’ movement models further account for

telemetry measurement error by coupling a statistical

model for the telemetry observation process with a

model that describes the true, but unobserved, move-

ment process (Patterson et al. 2008). In principle, state-

space movement models can be used to directly quantify

species–habitat relationships (McClintock et al. 2012);

however, they are typically used only to estimate true

animal paths and infer behavioral states.
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The contemporary methods highlighted here are

important developments for the analysis of telemetry

location data; however, additional challenges remain.

For example, existing models assume elliptical (or

circular) patterns of measurement error, even though

some remote sensing devices impose more complicated

error structures on the data. Constraints, or barriers, to

animal movement present another complication. Con-

straints modify the spatial support of the animal

movement process by limiting where an individual or

species exists, and may interact with measurement error

to yield telemetry locations that occur in areas not

accessible by the telemetered individual (e.g., Fig. 1a).

Although spatial constraints have been incorporated

into animal movement models (e.g., Sumner et al. 2009,

McClintock et al. 2012), they have not been used to

quantify resource selection.

We propose an approach for obtaining inference

concerning resource selection from animal location data

that accounts for complicated error structures, con-

straints to animal movement, and temporally autocorre-

lated observations. To our knowledge, these objectives

have not been addressed previously in a unified

framework. We specify a model for observed telemetry

data conditional on true, but unknown, locations that

reflects prior knowledge about constraints on the animal

movement process. Although constraints to animal

movement are typically viewed as a nuisance, our

approach uses constraints to simultaneously estimate

and account for telemetry error. We first apply the

model to a simulated data set and compare it to

common ad hoc approaches used when confronted with

constraints to animal movement. We also illustrate our

framework by analyzing an Argos satellite telemetry

data set on harbor seals (Phoca vitulina) in the Gulf of

Alaska; this species is constrained to move within the

marine environment and adjacent coastlines.

TELEMETRY LOCATION DATA

The model that we propose is general and can be

applied to various combinations of telemetry data types

(e.g., VHF, GPS, or geolocation telemetry); however,

our focus here is on Argos telemetry data. Argos satellite

telemetry is a popular platform for collecting animal

location data because it is cost effective, and because all

location estimates are conveniently delivered to the end

user electronically, making tag recovery unnecessary.

Argos satellite telemetry has also seen extensive use for

more than two decades, resulting in massive historical

data sets that are ripe for reanalysis using state-of-the-

art methodology (Movebank.org currently contains

.250 Argos telemetry data sets).

Our model application specifically focuses on telem-

etry locations like those in our harbor seal data set,

which were calculated via the Argos least squares

positioning algorithm (Service Argos 2015). These

location data require special treatment because they

exhibit an x-shaped error distribution that has greatest

FIG. 1. Simulation of 300 true locations (lt, black circles) of
harbor seals (Phoca vitulina) in the Gulf of Alaska, according to
the process model (Eq. 3) using two resource selection
covariates, namely distance to a point of attraction (e.g., a
haul-out site; blue triangle) and bathymetry. The blue polygon
represents S, the spatial support of the movement process
within which all lt occur. (a) Observed telemetry locations (st;
crosses) were simulated according to the observation model
(Eq. 1) with three levels of telemetry measurement error
corresponding to high- (yellow), medium- (orange), and
low- (red) accuracy Argos locations (i.e., Argos location classes
3, 0, and B, respectively). The lines connect a subset of observed
locations with their corresponding true location. (b) The
posterior distribution of lt (blue to purple color gradient in
S; darker colors represent higher posterior probability). Lines
connect a subset of true animal locations (black circles) with
their corresponding observed locations (yellow crosses) and
posterior modes (red crosses).
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error variance along the NW–SE and NE–SW axes, a

consequence of the polar orbiting Argos satellites and

error that is largest in the direction perpendicular to the

orbit (Costa et al. 2010, Douglas et al. 2012). Analysis of

these data is further complicated by the fact that valid

Argos telemetry locations are assigned one of six

location classes, each exhibiting different error patterns

and magnitudes. In order of decreasing accuracy, the

location classes are 3, 2, 1, 0, A, and B.

MODEL FORMULATION

Suppose individuals in a population of animals are

constrained to move within S, the spatial support of the

movement process. Let st [ (s1,t, s2,t)
0 be the pair of

coordinates for an observed telemetry location on a

single individual at time t, and lt [ (l1,t, l2,t)
0 be the

pair of coordinates for the corresponding latent (i.e.,

unobserved) true location. Although lt is restricted to be

within S, this is not true for the observed telemetry

location which can fall outside of S due to measurement

error (Fig. 1a).

Observation model.—An appropriate observation

model must describe how telemetry locations arise

conditional on true locations. We allow for various

telemetry error structures using

st ;
tmðlt;RÞ; with probability pt

tmðlt; R̃Þ; with probability 1� pt
:

�
ð1Þ

In this expression, the observed telemetry locations st
arise from a mixture of multivariate t distributions with

mean lt (the true location), scale matrices R and R̃, and
‘‘degrees of freedom’’ m. The parameters R, R̃, and m
describe error in the telemetry measurement process.

The degrees of freedom parameter m specifically adjusts

the heaviness of the tails in the t distribution, thereby

accommodating extreme errors commonly seen in

telemetry data (Jonsen et al. 2005, Hoenner et al.

2012). Note that the t distribution approximates a

Gaussian distribution for m � 30. The scale matrix R is

parametrized in a flexible manner:

R ¼ r2 1 q
ffiffiffi
a
p

q
ffiffiffi
a
p

a

� �
ð2Þ

where r2 quantifies scale in the longitude direction, a

modifies r2 to describe scale in the latitude direction,

and q describes the correlation between variation in the

two directions. The scale matrix R̃ is identical to R
except for the off-diagonal elements which are multi-

plied by �1; thus, the off-diagonals of R̃ are �q
ffiffiffi
a
p

.

When q¼ 0, Eq. 1 collapses to a single multivariate t

distribution that is appropriate for circular (a ¼ 1) and

elliptical error distributions (a 6¼ 1). Alternatively, q 6¼ 0

results in two distributions that are reflected across the

vertical axis. Consequently, when q 6¼ 0, Eq. 1 specifies a

mixture distribution that decomposes potentially com-

plicated error structures like the x-shaped pattern

evident in Argos telemetry data into two simpler forms,

with one mixture component for errors along the NE–

SW axis (described by R) and another for errors along

the SE–NW axis (described by R̃). We define pt ¼ 0.5

because the orbital plane of Argos satellites changes

continuously; therefore, observations are equally likely

to come from either mixture component.

The parameters relating to measurement error (i.e.,

r2, q, a, and m) can be estimated independently for

different error classes (e.g., Argos location quality

classes) or adapted to accommodate a continuous metric

of location quality (e.g., GPS dilution of precision).

Since 2011, Argos has also provided error ellipses

associated with locations processed via a Kalman

filtering algorithm. Error ellipses better characterize

the magnitude and orientation of errors than location

classes, and can be used to inform observation model

parameters (e.g., McClintock et al. 2014).

Process model.—Animal locations are naturally

viewed as a realization of a point process that has a

spatially heterogeneous intensity function (Aarts et al.

2012, Johnson et al. 2013). The intensity function

summarizes the ecological processes that give rise to

animal locations, and thus provides inference for

species–habitat relationships. A weighted distribution

is often used to model this intensity function (Lele and

Keim 2006, Aarts et al. 2012), which is the approach we

adopt as a model for the true locations:

lt ;
exp x 0ðltÞb� gðlt; lt�Dt

Þ
� �

Z
S

exp x 0ðlÞb� gðl; lt�Dt
Þ

� �
dl
: ð3Þ

In Eq. 3, x(lt) is a vector of spatially referenced

resource or habitat covariates at location lt, b is a vector

of resource selection coefficients, and gðlt; lt�Dt
Þ is a

spatially explicit movement kernel centered at lt�Dt
, the

previous true location (Dt denotes the time elapsed

between lt and the previous true location). We

approximate the integral in the denominator of Eq. 3

by numerical quadrature (Dorazio 2012). The kernel

gðlt; lt�Dt
Þ governs the distribution of available habitat

and accounts for temporal autocorrelation among

locations. The movement kernel is modeled as

gðlt; lt�Dt
Þ ¼

dðlt; lt�Dt
Þ

Dt/
ð4Þ

where dðlt; lt�Dt
Þ is the distance between lt and lt�Dt

,

and / is a scaling parameter. Importantly, d(�, �) must

adhere to animal movement constraints and is thus

measured exclusively through the domain defined by S.

In the case of marine mammals like harbor seals, d(�, �)
represents the distance through water (i.e., the swim

distance). In practice, we calculate d(�, �) using least-cost

distance (Dijkstra 1959). Given that Eq. 4 takes the form

of an exponential kernel, the range of correlation

between consecutive locations can be inferred by noting

that gðlt; lt�Dt
Þ’ 0 when dðlt; lt�Dt

Þ=Dt . 3/.
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Prior distributions.—To complete the Bayesian for-

mulation of this model, we specify prior distributions for

the unknown parameters. We assume r ; Uniform(0, u)

with similar uniform priors for q, a, m, and /, and b ;

N(0, s2I), where s2 is the variance and I represents the

identity matrix. See Appendix A for the full model

specification and Appendix B for details regarding

model implementation.

MODEL APPLICATION

Model evaluation using simulated data

An example realization from the model described

above is shown in Fig. 1a. All parameters in the

simulation were chosen to be similar to those estimated

in an analysis of harbor seal telemetry data (see Case

study). To simplify presentation of results, telemetry

measurement error corresponded to high-, medium-,

and low-accuracy Argos locations (i.e., location classes

3, 0, and B, respectively).

We fit the model using a Markov chain Monte Carlo

(MCMC) algorithm written in R (provided in the

Supplement; R Development Core Team 2013) to 250

data sets simulated using the process previously described,

each containing 1000 locations randomly allocated to the

three error classes. Inference was based on 2000 MCMC

samples after convergence. An example of posterior

inference for the true locations lt is shown in Fig. 1b.

We compare inference for lt and b from our model to

three ad hoc alternatives commonly used when con-

fronted with telemetry measurement error and con-

straints to animal movement. These alternative

approaches approximate lt by (1) ‘‘snapping’’ observed

telemetry locations to the nearest location in S; (2)

excluding from analysis all observed locations not in S;

or (3) using a speed filter (Freitas et al. 2008) to first

remove particularly aberrant observations, then elimi-

nating remaining observations that are not in S. A

spatial point process model is then used for resource

selection inference (Aarts et al. 2012). Specifically, we

modeled the counts of lt per spatial unit (e.g., raster grid

cell) using a Poisson generalized linear model. We make

one additional comparison with a model wherein Eq. 1

is updated to be a normal distribution with q ¼ 0. This

modification mimics the simpler observation models

commonly used in other approaches (e.g., Jonsen et al.

2003, Johnson et al. 2008a, Sumner et al. 2009) and

provides a benchmark for assessing the performance of a

mixture model that accommodates complicated error

distributions.

Inference pertaining to the latent state variable lt and

resource selection coefficients b from the approaches just

described are summarized in Tables 1 and 2. Our model

retains all telemetry locations to estimate lt with greater

accuracy than the alternative approaches, and particu-

larly excels for the lower quality error classes that often

dominate animal telemetry data sets (Douglas et al.

2012). Censoring observations (ad hoc alternatives 2 and

3) eliminated .66% of the observed locations; data loss

was particularly severe for the lower quality error

classes. Estimates of b were overly confident when lt

was approximated by filtering, snapping telemetry

locations to S, or excluding observations not in S

(Table 2). For example, interval coverage for one of the

resource selection coefficients was 0% for all of these

approaches. Coverage of intervals for the mixture t

model was comparable to coverage attained when Eq. 1

was updated to a bivariate normal observation model.

Both provided nominal coverage for b, as well as

estimates of b that were the least biased among all

approaches (Table 2). Estimates of other parameters in

our model were satisfactory and are described in detail

in Appendix C.

Case study: Harbor seals

To demonstrate our approach with real data, we

applied our model to telemetry locations of an adult

female harbor seal monitored near Kodiak Island,

Alaska during 1995 and 1996 (Fig. 2). Telemetry

locations were collected on average every 4.3 h (range

0.02–131.9 h) using an Argos satellite telemetry device.

The animal’s position was measured on 1457 occasions,

with ;80% of locations coming from the three least

accurate Argos location classes (i.e., large measurement

error). We used a 250-m resolution raster of the marine

environment to define S, the extent of which was limited

to 60 km (measured through the water) from the haul-

TABLE 1. Performance of five methods for estimating lt (true locations) based on 250 simulations of 1000 telemetry locations each.

Estimation method

All locations High-accuracy locations Medium-accuracy locations Low-accuracy locations

E(n) E(d ) (m) E(n) E(d ) (m) E(n) E(d ) (m) E(n) E(d) (m)

Mixture t model 1000 2 178 333 1811 334 2208 333 2 513
Snap st to S 1000 10 890 333 3173 334 6108 333 23 393
Exclude st � S 326 9 867 160 2715 125 4416 40 22 472
Speed filter 211 4 971 117 2460 83 3116 11 9 357
Normal model 1000 2 615 333 2162 334 2778 333 2 905

Notes: The notation E(�) denotes the expectation, or mean value over the simulations. Specifically, E(n) is the expected sample
size and E(d ) represents E [d (l̂t, lt )], the expected distance in meters between l̂t (the estimated true location) and lt as measured
through the domain defined by S. For the mixture t and normal models, l̂t was calculated as Mode(l j s). The expected distance
E [d (l̂t, lt)] for all locations combined was weighted to account for varying sample sizes in the exclude st � S and speed filter
methods. High-, medium-, and low-accuracy observed locations were simulated to be consistent with Argos location classes 3, 0,
and B, respectively.
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out location. Defining S in this way should capture all

potential lt because harbor seals typically stay within 30

km of their haul-outs (Lowry et al. 2001, Small et al.

2005), and nothing suggests that this individual exhib-

ited longer distance movements. For illustration pur-

poses, we focused on selection inference pertaining to

distance to haul-out site and bathymetry. Both covar-

iates were represented as 250-m resolution rasters and

were only marginally correlated (r ¼ 0.14).

Point estimates for lt (posterior mode) were 4.2 km

from the haul-out site, on average, and 95% of the

posterior probability for lt was within 13.0 km of the

haul-out site in water 55 m deep or less (Fig. 2).

Resource selection coefficients for distance to haul-out

and bathymetry were estimated as b1 ¼�2.03 (95% CI:

�2.45, �1.62) and b2 ¼�0.82 (95% CI: �1.12, �0.53),
respectively, indicating that areas far from the haul-out

site and deeper water were selected against. These results

are consistent with other findings that harbor seals

generally use shallower water near their haul-out sites

(Lowry et al. 2001, Small et al. 2005). Estimates for m
were less than 30 for all Argos error classes, supporting

our use of the t distribution to ensure that extreme

observations do not exert undue influence on inferences.

Estimates for all parameters are provided in Appendix

D and we illustrate the flexibility of our observation

FIG. 2. Argos satellite telemetry locations (red crosses) of an adult female harbor seal monitored from 9 October 1995 to 4 June
1996 along the southern coast of Kodiak Island, Alaska, USA. The blue polygon represents S, the spatial support of the movement
process; for seals, this is the marine environment and adjacent coastlines. Our analysis focused on resource selection inference
pertaining to distance to haul-out site (blue triangle) and bathymetry (gray contour lines). The posterior distribution of lt is
represented by the blue to purple color gradient in S; darker colors indicate higher posterior probability. Lines connect a subset of
observed locations with their corresponding posterior modes (black circles). Water depth contours are labeled in meters.

TABLE 2. Performance of five methods for estimating b
(resource selection coefficients) based on 250 simulations of
1000 telemetry locations each.

Estimation method

Distance to
haul-out, b1 Bathymetry, b2

Relative
bias Coverage

Relative
bias Coverage

Mixture t model 0.01 0.96 0.01 0.90
Snap st to S �0.33 0.00 0.02 0.83
Exclude st � S �0.05 0.63 �0.94 0.00
Speed filter 0.28 0.10 �0.92 0.00
Normal model 0.02 0.92 0.02 0.85

Notes: Relative bias in estimating b was calculated as (E(b)�
b)/b and ‘‘Coverage’’ is the percentage of 95% intervals that
contained the true b.
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model in Appendix E. All inference was based on

100 000 MCMC samples, which required 55 hours of

processing time on a computer equipped with a 3.0 GHz

Intel Xeon processor.

DISCUSSION

Our model for resource selection inference addresses

several complicating factors in the analysis of animal

telemetry data. Our model accounts for telemetry

measurement error and temporally autocorrelated ob-

servations, and, unlike other approaches, also accom-

modates complicated error structures and constraints to

animal movement. In fact, we show that constraints to

movement are helpful in estimating and accounting for

measurement error.

Our model consists of two general components, one

‘‘process’’ model for the true animal locations and

another for the observed telemetry locations that is

conditional on the true locations (the ‘‘observation’’

model). These components are implemented in a unified

framework such that uncertainty naturally propagates

through the model, thereby properly accounting for

uncertainty in parameter estimates. This unification

further allows resource or habitat covariates to improve

estimation of lt. Methods that are implemented in two

stages, where the true locations are first estimated and

then used in a secondary analysis to quantify resource

selection, do not allow uncertainty in the first stage to

propagate through the second stage unless a boot-

strapping or multiple imputation procedure is used (e.g.,

Hanks et al. 2011). The ad hoc alternatives presented in

our simulation study bear this shortcoming, as do state-

space movement models, which are often applied in a

two-step fashion. Our framework also allows for

generalizations such as the joint analysis of multiple

individuals using random effects for b and /, which

could themselves be functions of auxiliary demographic

information such as gender or age.

Methods that account for sampling artifacts improve

ecological inference. Ignoring telemetry measurement

errors, or hiding them in a pre-processing stage, yields

inaccurate estimates of true animal locations and

inference for resource selection coefficients that is biased

and overly confident (Tables 1 and 2). Censoring poor-

quality locations leads to substantial data loss, partic-

ularly when dealing with wildlife data sets that often

largely consist of low-quality observations (Douglas et

al. 2012). Given the x-shaped error pattern in Argos

telemetry data, true animal locations are more likely to

occur on a diagonal from the observed location, rather

than, for example, due north of the observed location.

Our observation model incorporates this nuance and

estimates lt with greater accuracy than one that assumes

simpler, elliptical error structures (Table 1). However,

both approaches account for uncertainty in lt and thus

provided comparable inference for b.
Animal behavior, such as increased milling by harbor

seals near haul-out sites, can bias times at which satellite

telemetry locations are acquired and may therefore affect

resource selection inference (Frair et al. 2010). The

telemetry device used in our case study was programmed

to suspend transmissions after 6 h during haul-out bouts,

mitigating this concern. Alternatively, predicting lt at a

fixed time interval may account for bias (e.g., McClin-

tock et al. 2012, 2013), although this general technique

appears to be untested. Nonetheless, augmenting our

model to obtain predictions for unobserved lt at any

time or sequence of times is straightforward. However,

methods that are conceptually based on locations

collected at regular time intervals may not be applicable

when data are as intermittent as those in our harbor seal

data set (Breed et al. 2011, Silva et al. 2014). Methods for

point process data collected under preferential sampling

present another promising option for modeling tempo-

rally biased telemetry locations (Diggle et al. 2010).

Constraints in space and time

Many animals such as African elephants, European

bison, Asiatic wild asses, and Mongolian gazelles

encounter fences, railroads, roads, and other barriers

that prevent free-ranging movements (Loarie et al. 2009,

Kowalczyk et al. 2012, Ito et al. 2013). Our model could

easily be extended to accurately estimate the locations of

these species in their spatially constrained environments.

Features that restrict but do not preclude movement,

such as proximity to water, a nest site, or escape terrain,

also represent constraints. These ‘‘soft’’ constraints can

be modeled in much the same way as we modeled

attraction to a haul-out site for harbor seals (i.e., as a

component of the resource selection function).

Methods that account for measurement error, such as

state-space movement models, often require an a priori

understanding of error patterns, usually obtained from

published studies (Jonsen et al. 2003, Jonsen et al. 2005,

Johnson et al. 2008a). Unfortunately, observed error

patterns can differ in unpredictable ways due to

differences in animal behavior, habitat obstructions,

environmental conditions, and geographic locations

(Cargnelutti et al. 2007, Lewis et al. 2007, Douglas et

al. 2012). Consequently, no single description of

measurement error may be universally applicable to a

tracking technology. Constraints to movement, and the

subsequent discrepancy between the spatial support of lt

and st, allow our model to estimate species- and system-

specific telemetry measurement error without the ex-

pense of collecting additional data (e.g., Costa et al.

2010 and Douglas et al. 2012, who used two telemetry

technologies to simultaneously collect locations on free-

ranging animals). As such, we view constraints as an aid

in the modeling and estimation process.

A second constraint, namely a mechanistic temporal

movement constraint (Eq. 4), also operates in our

model. This movement kernel expands and contracts

inversely with Dt, thereby accounting for temporal

autocorrelation between consecutive locations (Aarts et

al. 2008, Johnson et al. 2008b, Forester et al. 2009,
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Hooten et al. 2014). The kernel also defines the

distribution of resources available to the individual,

which is data-driven as it is governed by the estimated

scale parameter / and the previous location lt�Dt. The

process model (Eq. 3) balances the effect of gðlt; lt�Dt
Þ

with that of the resource selection function; both are

modified by the spatial constraint when lt�Dt
is near the

boundary of S.

Guidance

Methods that accommodate barriers to movement are

important for obtaining reliable inference on animals

living in highly constrained environments; however,

such methods are computationally expensive compared

to alternatives that do not incorporate movement

constraints (e.g., Johnson et al. 2008a). Future work

comparing approaches, as well as varying degrees of

constrained movements, will help to provide additional

guidance. We encourage researchers to model the

mechanisms affecting their measurements. Other eco-

logical models have emphasized the observation process

with much success (e.g., models for occupancy and

capture–recapture abundance estimation). Analyses of

telemetry data merit the same attention.
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