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Summary

1. Hill numbers unify biodiversity metrics by combining several into one expression. For example, species rich-

ness, Shannon’s diversity index and the Gini–Simpson index are a few of the most used diversity measures, and

they can be expressed asHill numbers. Traditionally, Hill numbers have been calculated from relative abundance

data, but the expression has been modified to use incidence data as well. We demonstrate an approach for esti-

matingHill numbers using an occupancymodelling framework that accounts for imperfect detection.

2. We alter the Hill numbers formula to use occupancy probabilities as opposed to the incidence probabilities

that have been used previously and to calculate its summations from the modelled species richness. After intro-

ducing the occupancy-basedHill numbers, we demonstrate the differences between them and the incidence-based

Hill numbers previously used through a simulation study and two applications.

3. In the simulation study and the two examples using real data, the occupancy-based Hill numbers were larger

than the incidence-basedHill numbers, although species richness was estimated similarly using bothmethods.

4. The occupancy-based Hill number estimators are always at their asymptotic values (i.e. as if an infinite num-

ber of samples have been taken for the study region), therefore making it easy to compare biodiversity between

different assemblages. In addition, theHill numbers are computed as derived quantities within a Bayesian hierar-

chical model, allowing for straightforward inference.

Key-words: Bayesian methods, Gini–Simpson index, incidence matrix, multi-species occupancy

model, Shannon entropy, species richness

Introduction

Biodiversity is one of the most important concepts in the study

of ecology and is commonly measured by species richness, the

Gini–Simpson index and Shannon entropy (Lande 1996; Jost

2006;Mao 2007; Gotelli & Chao 2013; Chao et al. 2014).Mul-

tiple measurements of biodiversity are valuable because species

richness does not account for evenness among species. To

adapt the example from Gotelli & Chao (2013), suppose two

communities both contain exactly five species. The first com-

munity has one species comprising 0�80 of the total number of

individuals, with the other species each comprising 0�05 of the
assemblage. In the second community, each species comprises

0�20 of the population. Arguably, the second community

should be seen as more diverse, but the species richness estima-

tor is not robust enough to distinguish the two communities.

Therefore, other measurements of biodiversity are also used;

both the Shannon entropy and the Gini–Simpson index take

relative abundances of each species into account. The Shannon

entropy ‘quantifies the uncertainty in the species identity of a

randomly chosen individual in the assemblage’ (Gotelli &

Chao 2013). It is also called the Shannon’s diversity index or

the Shannon–Wiener index (Jost 2006). The Gini–Simpson

index ‘measures the probability that two randomly chosen

individuals (selected with replacement) belong to two different

species’ (Gotelli & Chao 2013). Variations of the Gini–Simp-

son index include the Simpson concentration, the inverse

Simpson concentration, the second-order Renyi entropy or the

Hurlbert–Smith–Grassle index (Jost 2006).

Hill numbers conveniently summarize all three types of bio-

diversity using a single expression, providing a unification (Hill

1973; Chao et al. 2014; Chiu, Jost & Chao 2014) and a frame-

work from which to derive alpha and beta diversities (Jost

2007). We describe the Hill number formula and its exact rela-

tionship to Shannon entropy and the Gini–Simpson index in

the ‘Implementation’ Section.

Traditionally, biodiversity measurements are functions of

the relative abundances of each species in an assemblage, as

obtained from the sampling design. However, Hill numbers

have also been calculated using presence–absence data (Col-

well &Coddington 1994; Colwell,Mao&Chang 2004; Colwell

et al. 2012; Gotelli & Chao 2013; Chao et al. 2014). The pres-

ence–absence data are less informative than species counts, but

they can be easier to collect, they may allow for comparisons
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with historic data, and for some species, including soil

microbes and plankton, may be the only data obtainable due

to their large counts and life-history traits.

Common attributes of the estimators mentioned above are

that they do not take imperfect detection into account and they

are sensitive to sample sizes (Lande 1996; Colwell et al. 2012;

Chao et al. 2014). In Hill number estimation, the concepts of

rarefaction and extrapolation have been introduced to deal

with unequal sample sizes when comparing different assem-

blages (e.g. Chao & Jost 2012; Colwell et al. 2012; Gotelli &

Chao 2013).While thesemethodsmake up for some shortcom-

ings, the issue of imperfect detection remains. Variation in

detectability affects relative abundances and incidence proba-

bilities and therefore affects the interpretation of the Hill num-

bers. Detectability is one of the reasons that sample size and

sample coverage play such an important role in the Hill num-

ber estimators.

Recent efforts in occupancymodelling have made it possible

to separate detection from the true occurrences of the species.

We describe a modification of the incidence-based Hill num-

bers to explicitly account for imperfect detection of species

through a multi-species occupancy model (Dorazio & Royle

2005). Dorazio et al. (2006) used the multi-species occupancy

model to estimate species richness and a species accumulation

curve, but other biodiversity measures can also be obtained

using this framework, bridging the divide between theoretical

knowledge about biodiversity and hierarchical statistical mod-

els (e.g. Iknayan et al. 2014).

We demonstrate how to directly account for detectability

in estimating Hill numbers and illustrate the discrepancy in

inference that results if we ignore this sampling reality.

Unlike traditional Hill numbers, the occupancy-based diver-

sity estimators remain invariant to the number of sites and

surveys and naturally account for differences in sampling

intensities. Occupancy model estimators provide the asymp-

totic values of interest, stay consistent when the number of

surveyed sites (i.e. the number of sampling units) changes

and make Hill number estimation accessible in an existing

framework. The utilization of Bayesian methods allows for

inference concerning the detection-adjusted, occupancy-based

Hill numbers and associated uncertainty as derived quanti-

ties. Estimating Hill numbers and other biodiversity measure-

ments becomes as easy as adding one line of code to an

existing algorithm. This ease of implementation removes the

need to rely on asymptotic approximations and takes all

sources of variation into account, leading to inference that

accurately portrays the uncertainty related to the estimator.

Finally, we can use the models to evaluate the sensitivity of

the desired inference to different survey designs.

The format of the rest of the paper is as follows. We first

reconcile the terminology and notation used in the Hill

number theory with that of occupancy models. We describe

their similarities and highlight the theoretical differences

among the incidence-based Hill numbers and those arising

from the multi-species occupancy models. We examine these

approaches through a simulation study and apply them to

two data sets: the forest ant data from Longino & Colwell

(2011) and plains fish data from eastern Colorado. We dis-

cuss the implications of the results of our simulation study

and provide guidance for the use of these diversity measures

in practice.

Hill numbers and occupancymodels

While being similar in most respects, the data collected and

analysed with Hill numbers are slightly different from those

collected for occupancy studies. In the Hill numbers litera-

ture, there are T sampling units, and each is assumed to be

sampled randomly and independently. The sampling units

are the locations where the species counts and/or recordings

of incidences took place (i.e. the trap, net, quadrat, plot or

point count). In the occupancy modelling literature, these

same sampling units are called the J sites and each of these

sites is surveyed K times.

Hill numbers are functions of the number of species in the

area of interest and the probabilities of encountering each spe-

cies at a given site (eqn 5). These calculations are based on the

incidence matrix, W � fwij; 8i; jg with i representing the

i = 1,. . .,Sobs species, and j = 1,. . .,T being the sampling units.

Sobs is the number of species that were ever detected within the

study area. In this incidence matrix, wij ¼ 1 if species i was

detected at sampling unit j andwij ¼ 0 if it was not detected.

In the multi-species occupancy model literature, there are

two matrices related to occurrences: one observed and one

latent. The first matrix, Y � {yij,∀i,j}, is the matrix of detec-

tion data. It is similar to W, the incidence matrix from above,

but it is augmented with rows of 0s to account for species that

occurred in the study area but went undetected on all surveys.

Therefore, this matrix hasM rows, whereM ≥ Sobs represents

the augmented population. The columns, j = 1, . . . ,J, repre-

sent the sites at which sampling occurred. If detection probabil-

ities were not affected by survey-specific covariates, then each

element of the matrix, yij, is the number of surveys in which

species iwas detected at site j. If themodel does include survey-

specific covariates, the data must be represented by a three-

dimensional array, with each element yijk being a binary vari-

able equalling 1 if species i was detected at site j on survey

k = 1, . . . ,Kj. Note that the number of surveys per site (Kj)

can vary. This detection matrix is very similar to the incidence

matrix of the Hill number literature, the main difference being

that in the implementation of the multi-species occupancy

model, we augment the detection matrix with rows of 0s to

account for the species that went completely undetected (Royle

&Dorazio 2012).

Inference in occupancy models is typically based on the

occurrence matrix,Z � fzij; 8i; jg, a matrix of latent variables

indicating the true occurrences of each species. As above, the

indices are i = 1, . . . ,M species and j = 1, . . . ,J sites. IfP
k yijk [ 0, then species i was detected at site j at least once

and it is a known occurrence (zij ¼ 1). If the species was never

detected at site j, then zij is an unknown quantity and must be

estimated. For further details on the multi-species occupancy

model, we refer the reader to Royle & Dorazio (2008) for a

comprehensive description.
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INCIDENCE AND OCCUPANCY PROBABIL IT IES

Incidence-based Hill numbers are functions of the incidence

probabilities, p, which are the probabilities that species were

detected (Chao et al. 2014). They are equivalent to the proba-

bility of a species occurring at a site multiplied by the probabil-

ity of it being detected,

pi ¼ wi 1� ð1� piÞK
� �

; eqn 1

where wi is the probability of occupancy for species i, pi
is the probability of detection given the site is occupied,

and K is the number of surveys. In a typical Hill num-

bers study, only one survey is conducted per site and

K = 1. The possibility of imperfect detection of a species

is acknowledged because it can and does happen for a

variety of reasons; for example, the species are mobile

and are temporarily absent from an area that they typi-

cally occupy; biologists are unable to correctly identify

species; the sampling method used is species-selective; and

time of day or weather can have a strong impact on

detectability.

Becausewi and pi are both unknown quantities in themodel,

we propose an alternative approach to obtain Hill numbers

that removes the detection component from the diversity mea-

sures and replaces the incidence probabilities by the occupancy

probabilities. Therefore, instead of this Bernoulli representa-

tion of the data:

PrðW ¼ wijÞ ¼ p
wij

i ð1� piÞ1�wij ; eqn 2

we use a similar expression for the underlying occurrence pro-

cess:

PrðZ ¼ zijÞ ¼ w
zij
i ð1� wiÞ1�zij : eqn 3

IMPLEMENTATION

The theoretical expression for incidence-basedHill numbers is

qD ¼
XS
i¼1

pi
PS
s¼1

ps

0
BBB@

1
CCCA

q0
BBB@

1
CCCA

1
1�q

: eqn 4

This equation requires q 6¼ 1, q ≥ 0 and represents the asymp-

totic diversity as T?∞ because it is only when an infinite

amount of sampling has been conducted that the species rich-

ness, S, will be known. For q = 1, the limit is used in place of

the direct equation, leading to the following expression:

1D ¼ exp �
XS
i¼1

pi
PS
s¼1

ps

log
pi

PS
s¼1

ps

0
BBB@

1
CCCA: eqn 5

While all values of qmay lead to useful inference concerning

the biodiversity of the study area, q = 0, 1, or 2 are especially

important as 0D represents species richness, 1D represents

Shannon diversity (the Shannon entropy exponentiated), and

2D represents Simpson diversity (inverse of the complement of

theGini–Simpson index, Jost 2006).

Because the incidence probabilities and species richness of

an assemblage are unknown, a variety of methods and estima-

tors have been proposed to calculate the incidence-based Hill

numbers (qDincid) while incorporating the fact that many spe-

cies likely went undetected in all samples. Extrapolated values

and bootstrapping techniques are often used to compare

assemblages that were sampled at different intensities (iNEXT

function, Chao et al. 2014), and separate formulas have been

created to estimate the asymptotic values of the Hill numbers

(Lee & Chao 1994; Colwell et al. 2012; Chao, Wang & Jost

2013; Chao et al. 2014). The asymptotic estimator for species

richness, 0Dincid, is supplied in Colwell et al. (2012), and the

asymptotic estimators for 1Dincid and 2Dincid are supplied in

appendix H of Chao et al. (2014). For the reader’s conve-

nience, we provide these formulas inAppendix A.

We propose that the Hill numbers can also be calculated

using the occupancy probabilities such that

qDoccu ¼ PN
i¼1

wiPN
s¼1

ws

0
B@

1
CA

q0
B@

1
CA

1
1�q

q 6¼ 1; q� 0 eqn 6

and

1Doccu ¼ exp �PN
i¼1

wiPN
s¼1

ws

log wiPN
s¼1

ws

0
B@

1
CA q ¼ 1: eqn 7

In multi-species occupancy models, N is the symbol used

to represent species richness. In practice, Hill numbers are

calculated as derived quantities within a Markov chain

Monte Carlo (MCMC) algorithm. To illustrate the imple-

mentation of this model and the calculation of the occu-

pancy-based Hill numbers, we refer the reader to the

code in Appendix B.2.

If detection probabilities were equal for every species, site

and survey, and an equal number of surveys per site were con-

ducted, then they would cancel and the occupancy-based Hill

numbers would be the same as the incidence-based Hill num-

bers. It is doubtful that detection probabilities will be equal for

every species. For example, one can imagine that relative abun-

dances could affect detections; that is, more prevalent species

will be detectedmore often than ones that occur as lower densi-

ties (Royle & Nichols 2003). The conspicuousness of species

must also be accounted for because more noticeable species

will have higher incidence probabilities and hence will appear

more often in the incidence-based Hill number calculations

than inconspicuous ones, but they are not more valuable to

diversity.

OTHER TERMINOLOGY

First, we remind the reader that an important assumption of

both the incidence-based and the occupancy-based expressions

is that the definition of a ‘site’ or ‘sampling unit’ is standard-

ized; incidence probabilities, occupancy probabilities and
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detection probabilities will all vary as the areal size of a site

enlarges. Assuming that the size of a site has been standard-

ized, different assemblages can be compared. Much work has

been done with the incidence-basedHill numbers regarding the

different number of samples that may have been taken when

comparing one assemblage to another (e.g. Gotelli & Colwell

2001; Colwell et al. 2012; Chao et al. 2014).

The incidence-basedHill numbers are a function of the num-

ber of sites that are sampled; thus, diversity accumulation

curves are created to help one compare diversity measures for

assemblages that were sampled at different intensities. These

curves are traditionally created through rarefaction and

extrapolation procedures. Rarefaction is similar to interpola-

tion, in that it is the estimation of Hill numbers for t < T sam-

pling units. Extrapolation is the estimation of Hill numbers for

T + m > T sampling units, with the additional sampling units

being defined as m. It has been suggested that extrapolation

only be usedwith up to twice the number of sampling units (i.e.

when m = T) in order for the estimate to remain relatively

unbiased (Chao et al. 2014).

Sampling coverage is the proportion of the total individuals

in an assemblage that are found in a sample (Jost 2010). Rare-

faction and extrapolation may be based on sample coverage

rather than the number of sampling units because sampling

units may have different degrees of completeness, depending

on the species–abundance distribution of the community

(Chao& Jost 2012). The use of sample coverage is to aid in cre-

ating an equal comparison between assemblages.

Diversity accumulation curves are usually functions of the

number of sampling units and are plots of the Hill numbers for

0 to T + m units. Alternatively, the diversity accumulation

curve can be a function of sample coverage andwould be a plot

of the Hill numbers for 0–100% coverage (Chao & Jost 2012).

The curves approach the asymptotic values of the biodiversity

measures if an unlimited number of samples were taken.

In hierarchical occupancy modelling, we estimate the total

number of species in the assemblage, N̂, which is the asymp-

totic value for S (Dorazio et al. 2006). The estimates for the

other Hill numbers are also the asymptotic values, thus mini-

mizing the need for rarefaction and extrapolation when com-

paring assemblages. Additional calculations associated with

incidence-based Hill numbers are as follows: Yi ¼
PT

j¼1 wij,

the incidence-based frequencies of species i, and Qk, the inci-

dence frequencies, where Qk is the number of species that are

detected in exactly k = 1, . . . ,T sampling units. In the occu-

pancy framework, the required calculations do not depend on

these quantities.

Simulation study

SIMULATING MULTI -SPECIES DATA

We conducted a simulation study to demonstrate how Hill

number estimates compare when calculated using incidence

probabilities versus the occupancy probabilities. We do not

expect the qDincid and
qDoccu to be equal due to their different

interpretations and the different data (one survey per site

versus multiple surveys per site) that are used in their calcula-

tions. However, the way their differences affect the resulting

estimators is of interest.

We simulated data withN = 100, 250 or 500 species, J = 25

or 100 sites, K = 2 or 5 surveys per site, and occupancy proba-

bilities were ‘very low’ with amedian value of 0�10, ‘low’ with a
median value of 0�20, or they were ‘moderate’ with a median

value of 0�50. Our simulated detection probabilities always had

a median value of 0�20. Simulation values were chosen to give

a range of what might be expected from the study design and

from the population. Simulated occupancy and detection

probabilities were based on the range of estimated values from

the literature (Dorazio et al. 2006; Williams 2009; Dorazio,

Gotelli & Ellison 2011; Holt et al. 2013). A block design of

these combinations led to a total of 36 sets of simulations. The

scenarios involving N = 100 or N = 250 species were repli-

cated 50 times; the scenarios involving N = 500 species were

replicated 20 times due to their much larger matrices and

longer computing times.

The occupancy and detection probabilities were simulated

fromnormal distributions on the logit scale, such that

logitðwiÞ�Normal a;r2
w

� �
; eqn 8

logitðpiÞ�Normal b;r2
p

� �
; eqn 9

for each species, i = 1, . . . ,N. The detection probability

parameters were b = �1�5 and r2 = 0�5. For the very low

occupancy probability scenarios, the parameters were a = �2

and r2 = 4; for the low occupancy probability scenarios, the

parameters were a = �1�5 and r2 = 0�5; and for the moderate

occupancy probability scenarios, the parameters were a = 0

andr2 = 0�5.
Under these parameters, for the most undersampled situa-

tion, whenK = 2 surveys per site and the population has a very

low occupancy probability distribution, then the interquartile

range of incidence probabilities will run from 0�009 to 0�1 with
a median near 0�03. If only one survey had been conducted at

each site, then the interquartile range for the incidence proba-

bilities would drop to (0�005, 0�06) with amedian of 0�02.
The occurrences and detections for each species and each

site (j = 1,. . .,J) were simulated from Bernoulli and Binomial

distributions, respectively,

zij �BernoulliðwiÞ eqn 10

yij �BinomialðK; pizijÞ: eqn 11

To estimate the occupancy-based Hill numbers, multi-spe-

cies occupancy models were fit to the resulting data (model

formulation given in Appendix B). A scale prior was used

for the probability of an element of the augmented popula-

tion being a species in the assemblage, /, following the rec-

ommendation of Link (2013). Normal priors were specified

for the mean parameters, a and b, and gamma priors were

specified for the precisions, 1=r2
w and 1=r2

p (Appendix B).

We obtained three chains of length 50 000 with a burn-in

of 25 000, all thinned by 5, leaving a total of 5000 saved
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iterations per chain. If parameters had not converged, as

assessed by the Gelman–Rubin statistic (R̂, Gelman & Ru-

bin 1992), an additional 20 000 iterations, thinned by 5,

were obtained.

To estimate the incidence-based Hill numbers, we aggre-

gated the simulated data across the number of surveys because

the study design associatedwith these expressions requires only

one survey per site. If species i was detected on at least one of

theK surveys of site j, then wij ¼ 1; otherwise wij ¼ 0. Under

this scheme,T = J.

We compared four values: (i) the true, occupancy-based Hill

numbers (qDoccu) resulting from the true occupancy probabili-

ties and using eqns (6) and (7); (ii) the estimated, occupancy-

based Hill numbers (q̂Doccu) derived from the parameters fit in

the multi-species occupancy model and eqns (6) and (7); (iii)

the true, incidence-basedHill numbers (qDincid) calculated from

the incidence probabilities using eqns (1), (4) and (5), and N,

the known species richness; and (iv) the estimated, asymptotic

incidence-based Hill numbers (q̂Dasymp) calculated with the

incidence matrix W from the simulated data, as described

above, and the formulas from Appendix A. In Appendix C,

we also show some results from estimating the extrapolated,

incidence-basedHill numbers, based on a doubling of the num-

ber of sites as recommended in Chao et al. (2014) and deter-

mined using their iNEXT function. We calculated the

extrapolated values for a subset of the simulations to gain

an idea of the estimated standard errors associated with the

estimates.

All comparisons in the Results section are made against the

true, occupancy-based Hill numbers, qDoccu. Comparison are

reported in terms of relative differences, D, which we alterna-

tively call the relative biases. Averaged across all simulations,

S, the relative differences are calculated as

D ¼ PS
i¼1

q̂Di � qDoccu;i

� �
=qDoccu;i.

SIMULATION RESULTS

The occupancy models led to unbiased estimates of species

richness, 0D � N, for most sets of simulations, albeit with

higher standard errors when fewer sites were surveyed,

when fewer surveys per sites were conducted and/or when

the median occupancy probabilities were lower (Table 1,

standard errors are reported in Appendix C). The occu-

pancy model estimates had a positive bias when only 25

sites were sampled, 2 surveys per site were used, and the

species overall had low occupancy probabilities. When

compared to the true, occupancy-based Shannon diversity

values, the 1D numbers, the occupancy model estimates

slightly underestimated the diversity measure (Table 2).

This bias was greater when the species richness increased

but was not affected by the number of sites sampled or

the number of surveys per site. The Simpson diversity val-

ues, the 2D numbers, were slightly overestimated for the

worst-case scenario (i.e. when the number of sites and sur-

veys were low and the occupancy probabilities were very

low or low), but the estimates were otherwise unbiased

(Table 3).

The true, incidence-based 0D numbers were identical to

N, the species richness. However, the incidence-based 1D
numbers were smaller than the occupancy-based numbers

by 4–10% (Table 2), and the incidence-based 2D numbers

were smaller than the occupancy-based numbers by

7–18% (Table 3). Both 1Dincid and
2Dincid were consistently

lower when two surveys per site were conducted than

when five surveys were conducted.

The estimated, asymptotic incidence-based Hill numbers,
0̂Dasymp, underestimated N by as much as 25% under the

worst-case scenarios. The relative biases were often more

than twice as high when 25 sites were sampled compared

to 100 sites, with all else kept constant. The biases were

severe when occupancy probabilities were very low, preva-

lent when occupancy probabilities were low and 25 sites

were surveyed, and mostly disappeared for the other sce-

narios. As noted in Colwell et al. (2012), these results are

not surprising as it is known that other estimators, such

as the incidence-based coverage estimator (ICE, Lee &

Chao 1994), are more appropriate for assemblages with

many rare and elusive species.

The q̂Dasymp performed much better when estimating the

higher indexed Hill numbers. All relative differences were

within 3% of the true qDincid, with most percentages being

equal, indicating that they are proper estimators of the inci-

dence-basedHill numbers for q = 1 and q = 2.

Example 1: Forest ants in Costa Rica

For a direct comparison with incidence-based Hill num-

bers, we fit the multi-species occupancy model to the ant

data that were analysed in Chao et al. (2014) (originally

analysed and collected by Longino & Colwell 2011) and

related the resulting occupancy-based Hill numbers to the

incidence-based Hill numbers. We focused on the data

associated with the 50 m elevation only, which consisted

of 15 sampling periods. Within the collected data, each

sampling period was broken into four transects with 10

samples taken along each transect (although along one

transect only nine samples were taken). Because the occu-

pancy model framework requires replicate sampling of a

given site, we set each of these 10 samples to be spatial

replicates (i.e. the K surveys) and each transect was treated

as a separate site, giving 1594 = 60 sites. While the sur-

veys should be repeated temporally, the treatment of sepa-

rate samples along a transect as different sampling

occasions is possible as the study design (MacKenzie et al.

2006; Royle & K�ery 2007). These spatial replicates are

valid as long as their coverage is small compared to the

size of the site and the study area, that is, as long as the

choice of survey sites is equivalent to sampling with

replacement (Kendall & White 2009).

In calculating the incidence-basedHill numbers, we used the

asymptotic estimators (Appendix A) to make a more equal

comparison with the occupancy-based Hill numbers than if we

had used the extrapolated values found in Chao et al. (2014).

We assumed T = 60 sites and collapsed the 10 surveys from
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each transect as we did in the simulation. In calculating the

occupancy-based Hill numbers, we used the same formulation

and priors as in the simulation study (Appendix B.1) and

obtained 50 000 MCMC samples, with a thinning rate of 5

and a burn-in of 25 000. Under this set-up, the model con-

verged for all parameters based on the Gelman–Rubin statis-

tic.

The resulting occupancy-basedHill numbers were much lar-

ger than the asymptotic, incidence-based Hill numbers for all

three diversity measures. The estimated species richness rose

from 287 to 329 species (95% CI: 282–404); the estimated

Shannon diversity, 1D, rose from 123�2 to 218�5 (95% CI:

189�2–257�6); and the estimated Simpson’s diversity, 2D, rose
from 89�3 to 198�8 (95% CI: 167�1–239�6). Because the

occupancy-based Hill numbers are derived quantities in the

Bayesian models, they have associated posterior distributions

andwe report their 95% credible intervals to provide a sense of

the uncertainty surrounding these estimates.

Example 2: Plains fish of eastern Colorado

For our second example, we considered incidence records

of fish in the South Platte River basin in eastern Colo-

rado. The distributions and abundances of Colorado’s

eastern plains native fishes have declined since 1900 such

that many are now state-listed and in need of conserva-

tion activities (Fausch & Bestgen 1997; Nesler et al.

1997). Anthropogenic changes including stream barriers,

Table 1. Comparison of the species richness estimators from the simulation study

N J w K Sobs
0Doccu

Relative differences,D

0Doccu
0Dincid

0Dasymp

100 25 Very Low 2 57 100 �0�02 0 �0�22
250 25 Very Low 2 142 250 �0�06 0 �0�26
500 25 Very Low 2 287 500 0�02 0 �0�26
100 100 Very Low 2 79 100 0�01 0 �0�10
250 100 Very Low 2 198 250 0 0 �0�11
500 100 Very Low 2 395 500 0 0 �0�12
100 25 Low 2 73 100 0�12 0 �0�06
250 25 Low 2 181 250 0�03 0 �0�09
500 25 Low 2 360 500 0�03 0 �0�08
100 100 Low 2 96 100 0�01 0 0

250 100 Low 2 240 250 0 0 �0�01
500 100 Low 2 478 500 0 0 �0�01
100 25 Moderate 2 94 100 0�04 0 0�01
250 25 Moderate 2 235 250 0�01 0 �0�01
500 25 Moderate 2 469 500 0 0 �0�01
100 100 Moderate 2 100 100 0 0 0

250 100 Moderate 2 249 250 0 0 0

500 100 Moderate 2 499 500 0 0 0

100 25 Very Low 5 70 100 �0�01 0 �0�16
250 25 Very Low 5 173 250 0�01 0 �0�18
500 25 Very Low 5 342 500 0 0 �0�19
100 100 Very Low 5 87 100 0�02 0 �0�05
250 100 Very Low 5 216 250 0 0 �0�06
500 100 Very Low 5 434 500 0 0 �0�05
100 25 Low 5 88 100 0�02 0 �0�02
250 25 Low 5 220 250 0 0 �0�03
500 25 Low 5 440 500 0�01 0 �0�04
100 100 Low 5 99 100 0 0 0�01
250 100 Low 5 248 250 0 0 0

500 100 Low 5 497 500 0 0 0

100 25 Moderate 5 99 100 0�01 0 0�01
250 25 Moderate 5 247 250 0 0 0

500 25 Moderate 5 495 500 0 0 0

100 100 Moderate 5 100 100 0 0 0

250 100 Moderate 5 250 250 0 0 0

500 100 Moderate 5 500 500 0 0 0

The relative differences,D, are calculated for the estimated, occupancy-based species richness (0Doccu); the theoretical, incidence-based species rich-

ness (0Dincid); and the estimated, asymptotic, incidence-based species richness (0Dasymp), when compared to the true occupancy-based species richness

from eqn (6) (0Doccu). N is the species richness, J is the number of sites, w describes the median occupancy probability, K is the number of surveys,

andSobs is themean number of species that were detected in a simulation.
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altered flow regime, siltation, channelization, changes in

water quality and introduced species have been implicated

in the decline of native fishes (Fausch & Bestgen 1997;

Falke, Bestgen & Fausch 2010; Perkin & Gido 2011).

Understanding the distribution of plains fish species is

essential to promoting conservation and potential expan-

sion of remaining populations.

We estimated Hill numbers for the fish community in

the main stem of the South Platte River downstream of

the confluence with the St. Vrain Creek in north-eastern

Colorado using data from recent sampling (Fig. 1). This

stretch of river is a homogeneous, high plains landscape

with centre-pivot irrigation for agriculture occurring along

the river. This homogeneity allowed us to make direct

comparisons of the incidence-based and occupancy-based

Hill numbers.

With surveys taking place from 2009 to 2013, a total of 36

species of fish were detected at 60 sites within this region. At

each site, one to five surveys were conducted. These surveys

were either electro-fishing or seining passes where fish were

identified and counted. For this analysis, we consider the data

from the electro-fishing passes. Because counts can be extre-

mely variable throughout the season and from year to year,

we collapsed them into presence–absence data as has been

Table 2. Comparison of the Shannon diversity estimators from the simulation study

N J w K Sobs
1Doccu

Relative differences,D

1Doccu
1Dincid

1Dasymp

100 25 Very Low 2 57 57�3 0�06 �0�09 �0�12
250 25 Very Low 2 142 142�5 0 �0�10 �0�11
500 25 Very Low 2 287 285�6 �0�02 �0�10 �0�13
100 100 Very Low 2 79 57�8 0�02 �0�10 �0�09
250 100 Very Low 2 198 143�9 �0�01 �0�10 �0�10
500 100 Very Low 2 395 284�6 �0�04 �0�10 �0�10
100 25 Low 2 73 87�3 0�05 �0�10 �0�10
250 25 Low 2 181 218�2 �0�02 �0�10 �0�12
500 25 Low 2 360 434�8 �0�04 �0�10 �0�12
100 100 Low 2 96 87�1 0 �0�10 �0�10
250 100 Low 2 240 217�4 �0�02 �0�10 �0�11
500 100 Low 2 478 436�1 �0�05 �0�10 �0�10
100 25 Moderate 2 94 94�6 �0�01 �0�10 �0�10
250 25 Moderate 2 235 237�2 �0�02 �0�10 �0�10
500 25 Moderate 2 469 474�3 �0�05 �0�10 �0�10
100 100 Moderate 2 100 95 �0�01 �0�10 �0�10*
250 100 Moderate 2 249 237�2 �0�02 �0�10 �0�10*
500 100 Moderate 2 499 474�1 �0�05 �0�10 �0�10
100 25 Very Low 5 70 57�9 0�02 �0�05 �0�04
250 25 Very Low 5 173 143�8 �0�01 �0�05 �0�06
500 25 Very Low 5 342 285�1 �0�04 �0�05 �0�06
100 100 Very Low 5 87 57�4 �0�01 �0�04 �0�04
250 100 Very Low 5 216 142�8 �0�02 �0�05 �0�06
500 100 Very Low 5 434 286�9 �0�04 �0�05 �0�05
100 25 Low 5 88 87�4 0 �0�05 �0�05
250 25 Low 5 220 218�4 �0�02 �0�05 �0�06
500 25 Low 5 440 435�8 �0�05 �0�05 �0�05
100 100 Low 5 99 87�2 �0�01 �0�05 �0�05 *
250 100 Low 5 248 217�9 �0�02 �0�05 �0�05*
500 100 Low 5 497 437�6 �0�05 �0�05 �0�05
100 25 Moderate 5 99 94�8 �0�01 �0�05 �0�05*
250 25 Moderate 5 247 237�1 �0�02 �0�05 �0�05
500 25 Moderate 5 495 474�1 �0�05 �0�05 �0�05
100 100 Moderate 5 100 94�9 �0�01 �0�05 NA*

250 100 Moderate 5 250 237�1 �0�02 �0�05 �0�06*
500 100 Moderate 5 500 474�1 �0�05 �0�05 NA*

The relative differences, D, are calculated for the estimated, occupancy-based Shannon diversity (1Doccu); the theoretical, incidence-based Shannon

diversity (1Dincid); and the estimated, asymptotic, incidence-based Shannon diversity (1Dasymp), when compared to the true occupancy-based Shan-

non diversity from eqn (7) (1Doccu).N is the species richness, J is the number of sites, w describes the median occupancy probability,K is the number

of surveys, andSobs is themean number of species that were detected in a simulation.

*For several simulations, the asymptotic Shannon diversity estimators did not give a value because no species were detected at exactly 1 or 2 sites. In

particular, none of the simulations for N = 100, one of the simulations for N = 250, and none of the simulations for N = 500, all with J = 100,

K = 5 andmoderate occupancy probabilities, yielded an asymptotic value. Going down the column of stars, the relative differences are based on 18,

40, 41, 49, 48, 0, 1 and 0 simulations.
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done previously for other count data (e.g. Royle & Nichols

2003; Dorazio & Royle 2005). As with the other model fits,

we obtained 50 000 MCMC samples, with a thinning of 5

and a burn-in of 25 000. To calculate the incidence-based Hill

numbers, we again collapsed the detections from all surveys

so that wij ¼ 1 if species i was ever detected at site j, and

wij ¼ 0 otherwise. A list of all species detected in the study is

provided in Appendix D.

As with the simulation study, the occupancy-based Hill

numbers for the plains fish were higher than the inci-

dence-based Hill numbers (Table 4). For this example, the

occupancy-based estimators were 14–29% higher than

their incidence-based counterparts. Using the occupancy

model, we estimated richness to be 46 species even

though only 36 species were detected. This estimate is in

line with sampling from the 1990s that identified 41

species in the South Platte River basin (Nesler et al.

1997). The posterior mean detection probability associated

with these data was 0�54, and the posterior mean occu-

pancy probability was 0�31.

Discussion

The estimated, occupancy-based Hill numbers had minimal

biases and were comparable with each other when either 25 or

100 sites were surveyed and when either 2 or 5 surveys per site

took place in simulation. In contrast, the true and estimated,

incidence-based Hill numbers were consistently lower when

fewer surveys per site were conducted; their values were 85–

90% of the occupancy-based Hill numbers. The disagreement

between the incidence-based and the occupancy-based Hill

number estimators existed even with five surveys per site. This

incongruity is important because increasing the number of sur-

veys increases overall detection. For example, with only two

Table 3. Comparison of the Simpson diversity estimators from the simulation study

N J w K Sobs
2Doccu

Relative differences,D

2Doccu
2Dincid

2Dasymp

100 25 Very Low 2 57 45�1 0�13 �0�15 �0�16
250 25 Very Low 2 142 111�7 0�06 �0�16 �0�15
500 25 Very Low 2 287 225�1 0�04 �0�18 �0�18
100 100 Very Low 2 79 45�6 0�06 �0�16 �0�15
250 100 Very Low 2 198 113 0�02 �0�18 �0�17
500 100 Very Low 2 395 223�6 0�01 �0�17 �0�17
100 25 Low 2 73 77�7 0�06 �0�17 �0�18
250 25 Low 2 181 194�4 0 �0�18 �0�18
500 25 Low 2 360 386�2 0 �0�18 �0�19
100 100 Low 2 96 77�4 0�01 �0�17 �0�17
250 100 Low 2 240 193 0�01 �0�17 �0�18
500 100 Low 2 478 388�7 �0�01 �0�17 �0�17
100 25 Moderate 2 94 90�5 �0�01 �0�17 �0�18
250 25 Moderate 2 235 227�2 0 �0�17 �0�18
500 25 Moderate 2 469 454�2 0 �0�17 �0�17
100 100 Moderate 2 100 91 0 �0�17 �0�16
250 100 Moderate 2 249 227�2 0 �0�18 �0�18
500 100 Moderate 2 499 454 0 �0�17 �0�17
100 25 Very Low 5 70 45�9 0�05 �0�09 �0�07
250 25 Very Low 5 173 113�3 0�01 �0�09 �0�09
500 25 Very Low 5 342 224 0�01 �0�09 �0�09
100 100 Very Low 5 87 44�9 0 �0�07 �0�07
250 100 Very Low 5 216 112�3 0 �0�09 �0�09
500 100 Very Low 5 434 225�8 0�01 �0�09 �0�09
100 25 Low 5 88 77�9 0�02 �0�09 �0�08
250 25 Low 5 220 194�4 0�01 �0�09 �0�09
500 25 Low 5 440 388�2 0 �0�10 �0�09
100 100 Low 5 99 77�6 0�01 �0�09 �0�09
250 100 Low 5 248 193�8 0 �0�09 �0�09
500 100 Low 5 497 390�7 0 �0�09 �0�09
100 25 Moderate 5 99 90�8 0 �0�09 �0�09
250 25 Moderate 5 247 227 0 �0�09 �0�09
500 25 Moderate 5 495 453�9 0 �0�09 �0�09
100 100 Moderate 5 100 91 0 �0�09 �0�09
250 100 Moderate 5 250 227�1 0 �0�09 �0�09
500 100 Moderate 5 500 454 0 �0�09 �0�09

The relative differences, D, are calculated for the estimated, occupancy-based Simpson diversity (2Doccu); the theoretical, incidence-based Simpson

diversity (2Dincid); and the estimated, asymptotic, incidence-based Simpson diversity (2Dasymp), when compared to the true occupancy-based Simpson

diversity from eqn (6) (2Doccu). N is the species richness, J is the number of sites, w describes the median occupancy probability, K is the number of

surveys, andSobs is themean number of species that were detected in a simulation.
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surveys per site, a species that has a 50% chance of being

detected during one sampling occasion given that it is present

has a 75% chance of being detected on at least one of the sur-

veys (1�(1�0�5)2 = 0�75).With five surveys per site, that prob-

ability jumps to 97%. Even at such high detection rates, the

occupancy framework consistently provided larger diversity

measure values. These discrepancies highlight the influence of

detectability on the incidence probabilities even if detection

rates are high.

Diversity measures should account for imperfect detection

because detectability will not be equal across all surveys,

sites or species, affecting the proportions in which individu-

als are seen versus their true proportions in the community.

Hill numbers can be readily estimated as derived quantities

in multi-species occupancy models. The use of a Bayesian

hierarchical model simplified estimation and incorporated

the uncertainty surrounding the total species richness and

the uncertainty related to the occupancy probabilities in the

posterior distributions of Hill numbers. We demonstrated

that these occupancy-based Hill number estimators are

accurate and stable.

We recognize that other diversity measures exist: alpha, beta

and gamma diversities, the Sørensen coefficient and the Jac-

card coefficient, to name a few. The estimation of these other

indices, as well as the untransformed Shannon entropy or

Gini–Simpson index, can be incorporated into an occupancy

model framework in a similar fashion to what we presented

here. Indeed, beta diversities have already been incorporated

into the framework (Dorazio, Gotelli & Ellison 2011), and the

species richness estimates are a fundamental component of the

multi-species occupancymodel (Dorazio&Royle 2005).

While study design changes may be necessary to obtain

occupancymodel estimates (e.g.multiple surveys per site), such

changes are becoming standard in contemporary ecological

data collection efforts. In some cases, as we illustrated, design

changes may not even be necessary if spatial replicates can be

used in place of temporal replicates (but see Kendall & White

2009).

In general, one could incorporate survey-specific and site-

specific covariates into the occupancy and detection compo-

nents of the model (as demonstrated in K�ery & Royle 2009;

Zipkin et al. 2010). Such heterogeneity may allow for greater

insight about Hill numbers, provide more intricate compari-

sons between assemblages and account for different sampling

protocols. Traditional Hill numbers do not explicitly allow for

diversity estimates in heterogeneous landscapes. With occu-

pancy-based Hill numbers, we can use the site-specific covari-

ates to compare biodiversity measures within a landscape and

among landscapes in one model. For example, elevation could

be used as a covariate in the Costa Rican forest ant data

instead of analysing each elevation separately (e.g. Longino &

Colwell 2011; Chao et al. 2014). This model would lead to

inference on how elevation affects the occurrences and detec-

tions of each species in addition to providing Hill number esti-

mates for each level of elevation.

The model-based approach described herein can easily be

adapted to accommodate count data. One can use derived

quantities in amulti-species N-mixture model, or similar statis-

tical model, to calculate detection-adjusted, abundance-based

Hill numbers. We believe that such an approach will similarly

Fig. 1. Sampling sites for plains fish on the

main stem of the South Platte River.

Table 4. Diversity measures for plains fish in the main stem of the

South Platte River in Colorado, with 95% credible and confidence

intervals

Parameter Model Estimate Lower bound Upper bound

0D̂occu Occupancy 45�88 37�00 64�00
1D̂occu Occupancy 28�84 24�58 39�78
2D̂occu Occupancy 25�06 20�88 35�45
0D̂asymp Incidence 40�07 – –
1D̂asymp Incidence 23�50 – –
2D̂asymp Incidence 19�49 – –
0D̂extrap Incidence 38�89 33�39 44�40
1D̂extrap Incidence 23�21 21�93 24�48
2D̂extrap Incidence 19�38 18�39 20�38
0D estimates species richness, 1D estimates the Shannon diversity, and
2D estimates the Simpson diversity. The qD̂asymp are the asymptotic,

incidence-based Hill numbers (Appendix A), and the qD̂extrap are the

extrapolated, incidence-based Hill numbers, calculated using the

iNEXT function inR and extrapolated toT = 2J = 120 sites.
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lead to estimatedHill numbers that are consistent across differ-

ent sampling schemes.
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