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Abstract.   While multi-species occupancy models (MSOMs) are emerging as a popular 
method for analyzing biodiversity data, formal checking and validation approaches for 
this class of models have lagged behind. Concurrent with the rise in application of MSOMs 
among ecologists, a quiet regime shift is occurring in Bayesian statistics where predictive 
model comparison approaches are experiencing a resurgence. Unlike single-species occupancy 
models that use integrated likelihoods, MSOMs are usually couched in a Bayesian frame-
work and contain multiple levels. Standard model checking and selection methods are 
often unreliable in this setting and there is only limited guidance in the ecological literature 
for this class of models. We examined several different contemporary Bayesian hierarchical 
approaches for checking and validating MSOMs and applied these methods to a freshwater 
aquatic study system in Colorado, USA, to better understand the diversity and distributions 
of plains fishes. Our findings indicated distinct differences among model selection approaches, 
with cross-validation techniques performing the best in terms of prediction.

Key words:   Bayesian hierarchical models; biodiversity; cross-validation; plains fish; South Platte River 
Basin; species distribution maps.

Introduction

Understanding how to measure biodiversity and what 
drives it are major quests for ecologists. Multi-species 
occupancy models (MSOMs) have been gaining in pop-
ularity as a means to analyze community-level ecology 
data while accounting for imperfect detection. They pri-
marily model detection-nondetection data, often referred 
to as presence-absence data, to quantify species’ ranges. 
MSOMs are fit to data on diverse taxonomic groups 
such as birds (Dorazio et al. 2006, Kéry and Royle 2009, 
Russell et  al. 2009, Zipkin et  al. 2009, Ruiz-Gutiérrez 
et  al. 2010, Carrillo-Rubio et  al. 2014), amphibians 
(Mazerolle et  al. 2007, Grant et  al. 2013), reef fish 
(MacNeil et  al. 2008), freshwater fish (Holtrop et  al. 
2010, Kirsch and Peterson 2014, Midway et  al. 2014), 
mammals (Burton et  al. 2012), plants (Gelfand et  al. 
2006), and ants (Dorazio et al. 2011). The output from 
MSOMs is used to test a variety of hypotheses, such as 
comparing biodiversity among areas with different man-
agement regimes (Zipkin et al. 2010, Carrillo-Rubio et al. 
2014), and areas with and without disease outbreaks 
(Giovanni et  al. 2013). Biodiversity metrics (Dorazio 
et  al. 2011, Broms et  al. 2015), point-level species 
richness (Kalies and Rosenstock 2013), metacommunity 
structure (Mihaljevic et  al. 2015), and statistics associ-
ated with the differences between species’ groupings 

(Zipkin et al. 2009, Ruiz-Gutiérrez et al. 2010, Tingley 
and Beissinger 2013) have also been estimated using the 
model output. MSOMs may aid landscape-level resource 
management and monitoring (Noon et al. 2012, Midway 
et al. 2014). In addition, extensions to the MSOMs have 
incorporated multiple states (Kéry et al. 2009), dynamic 
processes (Dorazio et al. 2010), and detection heteroge-
neity due to abundance (Yamaura et  al. 2011, 2012, 
Tobler et al. 2015).

The MSOM provides inference for occupancy and 
detection probabilities and parameter estimates for all 
species in the system. Because the parameters for each 
of the species arise from community-level distributions, 
the data are used efficiently and fewer parameters are 
required than if each species was fit independently. This 
“borrowing strength” technique is an advantage of ran-
dom effects models (Gelman and Hill 2007, Hobbs and 
Hooten 2015), and it has been an allure of Bayesian 
models since Tukey coined the phrase in 1963 (Scott and 
Smith 1969).

In addition, occupancy models allow for heterogene-
ous measurement error that accounts for species-specific, 
site-specific, and survey-specific differences in detection. 
Accounting for this type of measurement error leads to 
more accurate predictions than models that ignore 
imperfect detection (MacKenzie et al. 2006, Broms et al. 
2015).

MSOMs require an understanding of Bayesian models 
and Bayesian software (e.g., BUGS or JAGS; Iknayan 
et  al. 2014). In addition, model checking and model 
validation for Bayesian hierarchical models remain areas 
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of active research, thereby adding further complexity 
to the implementation of MSOMs (Hooten and Hobbs 
2015). In what follows, we explain model checking pro-
cedures for MSOMs and provide suggestions for model 
selection in these settings. As a motivating example 
throughout, we analyze multi-species freshwater fish 
data collected from 113 sites within the South Platte 
River Basin in Colorado. The system has approximately 
26 native species, of which 24 were detected.

The Multi-Species Occupancy Model

Two primary versions of the MSOM exist: one with 
known species richness and one with unknown species 
richness. First we describe the model with known species 
richness and then we add a hierarchical level, resulting 
in a new model with unknown species richness.

Known species richness

In well-studied systems, the species richness of the 
study area may be known. For example, in our study 
area, there are 26 native species (Propst and Carlson 
1986, Nesler et al. 1997). For this system, we can model 
the native species assemblage using the model with 
known species richness.

Let yijk represent the detection of species i, i = 1, …, N, 
at site j, j = 1, …, J, on survey (visit) k, k = 1,… ,Kj; N 
is the number of species in the community, also known 
as the species richness or gamma diversity, J is the num-
ber of sites that were sampled, and Kj is the number of 
sampling occasions or surveys of site j. The data point 
yijk equals 1 if the species truly occurs at the site and was 
detected, and is zero otherwise. The true occupancy of 
species i at site j, zij, is a latent indicator variable. If the 
species was detected at the site, then we know that it 
occurs at the site and zij = 1; otherwise its value is inferred 
from fitting the model. The probability of species i occur-
ring at site j is �ij, which can be a function of covariates. 
The probability of detecting the species is pijk, which also 
may be a function of one or more covariates. Assuming 
no false positives (i.e., that a species never gets recorded 
as present when it was absent) then the complete model 
statement is

where the vjk are the covariates pertaining to survey k of 
site j that affect detection probabilities and the xj are the 
covariates pertaining to site j that affect occupancy 
probabilities.

For the multi-species occupancy model, we do not 
independently estimate each coefficient for each species. 
Instead they are influenced by the other species through 
a community-level set of parameters (μα, μβ,�α, and �β

). Allowing all species’ coefficients to arise from common 
distributions leads to more powerful models but still 
allows for the same range of detection probabilities 
and/or occupancy probabilities as single-species occu-
pancy models (SSOMs). The estimates of the coefficients 
may now be shifted toward the community-level means, 
which implies that the models may understate how 
strongly a covariate affects the response variable. As 
we discuss in PRIORS and demonstrate through our 
example, we believe this type of borrowing of strength 
can be an asset and that the trade-off of slightly biased 
estimates for greater precision is a worthwhile 
compromise.

To complete the MSOM, we used the following weakly 
informative hyperpriors

The covariates should be standardized so that they 
have a mean equal to zero and variance equal to one. 
Standardizing allows for consistent default priors for all 
parameters (such as those specified above), allows for 
comparisons among covariate effects, and alleviates 
computational challenges.

Unknown species richness

In many community-level studies, the total species 
richness is unknown and the researcher would like to 
derive this and other biodiversity metrics for the study 
area. In this scenario, the researcher would include and 
estimate the number of species that were never detected. 
If species richness is unknown, one augments the model 
with a Bernoulli variable, wi, that indicates whether or 
not a species exists in the assemblage of interest

(1)yijk ∼Bernoulli(pijk ⋅zij)

(2)logit(pijk)= v
�
jk
�i

(3)zij ∼Bernoulli(ψij)

(4)logit(�ij)=x
�
j
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If species i was ever detected during the study, then 
wi = 1; otherwise it is inferred from the model similar to 
how the unknown, true occurrences, zij, are estimated. 
Species richness is then a derived quantity, N =

∑M

i= 1
wi, 

where M is an upper limit for species richness that is 
specified a priori. In the Bayesian framework, a prior for 
π is also included in the model; generally π∼Beta(απ, βπ) 
is used. The uniform distribution is often used for the 
prior distribution in this model (απ = βπ = 1, e.g., 
Dorazio et al. 2006, Zipkin et al. 2010). However, Link 
(2013) suggested that π∼Beta(0.001, 1), is a better choice.

If the estimate of species richness is near M, even when 
M is unreasonably large for the assemblage, it may be 
evidence of an ill-posed model. If many covariates are 
included in the model or there are many species that were 
rarely detected, the number of unknown parameters 
increases and the Markov chain Monte Carlo (MCMC) 
algorithm may have trouble converging.

In addition to species richness, other community and 
biodiversity metrics such as Shannon's diversity index, 
Hill numbers, and turnover rates have been derived 
using the MSOM with unknown species richness (e.g., 
Tingley and Beissinger 2013, Iknayan et al. 2014, Broms 
et al. 2015). However if a heterogeneous landscape was 
sampled, the addition of covariates in the occupancy 
probability formula (Eq. 4) may make community-level 
biodiversity metrics difficult to calculate.

Priors

Priors are an important, but often overlooked, com-
ponent in Bayesian models. For example, the prior for 
a logit-scale parameter (i.e., a coefficient in an occupancy 
model) should have low probabilities outside of (−5, 
5) because adding 5 on the logit-scale is equivalent to 
shifting the predicted probability from 0.01 to 0.50, or 
0.50 to 0.99 (Gelman et  al. 2014a). Alternatively, if 
one computes the inverse-logit of a normal variable 
with �2

= 2.25

2, it is relatively flat for most of (0,1) 
for the associated probability; the inverse logit trans-
formation of a variable with �2

= 10

2 leads to a 
U-shaped prior distribution for the associated proba-
bility, with most of its density on values close to 0 or 
1. To account for these realistic, a priori restrictions, 
Gelman et al. (2008) recommend a Cauchy distribution 
with scale σ  =  2.5 for logistic coefficients and σ  =  10 
for the intercept, or a scaled t-distribution with scale 
σ = 2.5 (and σ = 10 for the intercept) and seven degrees 
of freedom, ν = 7. (Note that a t-distribution with one 
degree of freedom, ν  =  1, results in a Cauchy distri-
bution, and a t-distribution with infinite degrees of 
freedom, ν  =  ∞, results in a normal distribution.) 
Gelman et  al. (2008) recommend a wider prior (i.e., 
one with a higher variance) for the intercept because 
they are often working with data where the mean prob-
ability is very close to 0–1. They recommend a scaled 

t-distribution because it has wider tails than a normal 
distribution and is therefore more robust to the occa-
sional large value (Gelman et al. 2008, 2014a). Dorazio 
et al. (2011) used μβ ∼ t(0, 1.566I,� = 7.763) priors, which 
are narrower than those recommended by Gelman et al. 
(2008), to encourage a preference for values < 5. Finding 
little empirical difference among these options, we used 
normal priors (Eqs.  7 and 10), because the associated 
algorithms were more stable. A weakly informative prior 
is a proper prior that is specified to provide some infor-
mation based on the realities of the data and model, 
but provides less information than the actual knowledge 
that is available (Gelman et  al. 2014a).

For variance parameters in process models, Gelman 
et  al. (2014a) recommend a uniform distribution as a 
vague, (i.e., diffuse or flat prior) prior for standard devi-
ations. They prefer a uniform over a gamma distribution 
because it may be less sensitive to the choice of prior 
parameters, which are the shape and scale parameters 
for the gamma distribution and the upper bound asso-
ciated with the uniform distribution. Gelman et  al. 
(2014a) also recommend a half-Cauchy distribution 
(which is a Cauchy distribution truncated below by 0) 
for the standard deviation because it is a weakly inform-
ative prior that may help with convergence in small 
sample size situations. Community data used with 
MSOMs are often sparse, thus we used half-Cauchy dis-
tributions but with σ  =  2.25 to reflect the same range 
for the standard deviations that the mean parameters 
have on the logit-scale.

Sensitivity to priors was tested through comparisons 
of model results under various prior parameteriza-
tions; we found that the normal and half-Cauchy priors 
led  to better convergence of our algorithms than the 
t-distribution or uniform distribution, respectively. 
Across all priors, posterior distributions were similar, 
although the weakly informative priors led to slightly 
more shrinkage.

Priors for shrinkage

Our selection of weakly informative priors is a form 
of ridge regression, which relates to penalized likelihood 
methods (Hooten and Hobbs 2015, Hutchinson et  al. 
2015); all represent types of shrinkage, alternatively 
called regularization. Regularization, its relationship to 
model selection, and its role in the occupancy model 
framework are emerging topics in statistical ecology 
(Moreno and Lele 2010, Hooten and Hobbs 2015, 
Hutchinson et al. 2015). While the concept of regulari-
zation has existed for decades within the statistics com-
munity, it is slowly being adapted as a method to improve 
ecological models. For the MSOM model, the weakly 
informative priors lead to estimates that are closer to 0 
than the maximum likelihood estimates (MLEs). This 
regularization may improve computational stability and 
lead to more reasonable parameter estimates than the 
MLEs, as we demonstrate with the South Platte data in 

(13)wi ∼Bernoulli(π).
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what follows. The regularization may also help with col-
linearity among covariates, over-parameterization, and 
the separation that can occur when a covariate perfectly 
predicts the outcomes associated with binary data 
(Gelman et al. 2008, 2014a, Hefley and Hooten 2015).

Model Checking and Validation

Goodness-of-fit evaluates model fit against the with-
in-sample data; it is one form of model assessment, 
which quantifies how consistent the data are with the 
chosen model and whether the model assumptions are 
appropriate. Within-sample data refer to the data that 
are used to fit the model. In ecological studies, it is 
common to treat all the data as within-sample data. 
Model selection is the process of selecting a best-fitting 
model from a set of models; it may be done using 
within-sample data as with AIC or with out-of-sample 
data, using predictive performance scoring rules. Out-
of-sample data refer to a subset of the data that is 
withheld when fitting a model and is instead used 
afterward to assess how well the model predicts. 
Predictive performance measures a model's ability to 
predict out-of-sample data and is important for model 
assessment.

Goodness-of-fit

Goodness-of-fit tests compare the observed response 
variables to the values predicted by the model. Evaluating 
goodness-of-fit is difficult for occupancy models because 
we would like to know how well we are estimating the 
true occurrences, zij. For most of our sites, zij is unknown 
and we have no true values against which to compare 
our estimates. Instead we compare our detections, yijk

, to the detections predicted by the model, ỹijk. Another 
difficulty with occupancy models is that the goodness-
of-fit tests commonly used for generalized linear models, 
based either upon Pearson residuals or deviance resid-
uals, do not follow a χ2-distribution when calculated 
for binary data and therefore cannot be used to assess 
model fit without an adjustment (McCullagh and Nelder 
1989, Kéry and Schaub 2012). Typically, one bins or 
groups the data, either by a categorical covariate or 
based on the predicted probabilities, so that the response 
is binomial rather than binary and then one can use 
the χ2-statistic (Gelman and Hill 2007, Hosmer et  al. 
2013). In the occupancy model framework, one might 
bin their data by summing over the surveys for each 
site. However, a statistic based on these sums will still 
not follow a χ2 distribution because of the latent occu-
pancy process. White et  al. (1999) and MacKenzie and 
Bailey (2004) recommend using parametric bootstrap-
ping for capture–recapture and occupancy models, 
respectively, to create a new distribution for the sum 
of squared residuals for the given data set, and then 
check if the observed test statistic value falls near the 
middle of the bootstrapped distribution.

We derived a goodness-of-fit test statistic (i.e., a 
Bayesian P-value) for the MSOM that is similar to the 
parametric bootstrapping used by White et  al. (1999) 
and MacKenzie and Bailey (2004). The primary dif-
ference between the test statistics is that our P-value 
is naturally Bayesian while theirs is non-Bayesian. Our 
P-value, also known as a posterior predictive check, 
followed the same process as Carrillo-Rubio et al. (2014), 
Kroll et  al. (2014), and Tobler et  al. (2015), but was 
based on the deviance residuals rather than the Pearson's 
residuals because of its relationship to information 
criterion theory (Spiegelhalter et al. 1998). We describe 
the approach in detail in Appendix S1.

In addition to calculating the Bayesian P-values, we 
looked at diagnostic plots to visually examine the model 
fits. We plotted the deviance residuals for each species 
and site and then plotted the residuals against the covar-
iates to highlight outliers and areas of lack of fit.

Model selection

If the goal is prediction, then one could avoid model 
selection by including all the covariates in the model and 
using regularization to restrict the parameter space 
through strong priors (e.g., Gelman and Hill 2007:67, 
Gelman et al. 2014a:367, Barker and Link 2015, Hooten 
and Hobbs 2015). However in ecology, often the goal of 
an analysis is to infer how the covariates relate to the 
response variables and thus we selected among compet-
ing models. We implemented and compared several 
model selection options because there is no consensus on 
an optimal model selection criterion for Bayesian occu-
pancy models.

Within-sample model selection.—Out-of-sample vali
dation and k-fold cross-validation, described in the 
Predictive Performance, are useful for choosing a 
best-predicting model (Hooten and Hobbs 2015). How-
ever, these options may be too time-consuming or may 
not be available in sparse data situations (Gelman et al. 
2014b). Therefore it is helpful to have a selection criterion 
that involves fitting each model only once. Criteria based 
on information theory use in-sample calculations to esti-
mate the expected out-of-sample prediction error (Gel-
man et al. 2014b). Unfortunately, the two most common 
methods of this type of model selection, AIC (Akaike 
information criterion; Akaike 1973) and DIC (deviance 
information criterion; Spiegelhalter et  al. 2002), are 
not ideal for Bayesian hierarchical occupancy models 
because of the models’ latent parameters (Hooten and 
Hobbs 2015), Gelfand et al. (2006) point out that DIC is 
also sensitive to parameterization.

WAIC (Watanabe-Akaike information criterion; 
Watanabe 2010) has recently been promoted as a with-
in-sample model selection criterion that is suitable for 
Bayesian hierarchical models as long as the data are 
conditionally independent (Gelman et al. 2014b, Hooten 
and Hobbs 2015). Following these suggestions, we used 
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WAIC to compare models for the South Platte fish data. 
The conditional predictive ordinate criterion (CPO) has 
been touted as another potential model selection crite-
rion (Petit 1990, Geisser 1993, Held et  al. 2010), and 
therefore we also compared models using this criterion. 
Their formulas are provided in Appendix S1.

Predictive performance.—To select a model based on 
its true predictive performance, one needs out-of-sample 
data. To use out-of-sample data, one can collect more 
data or completely withhold a subset of their data, then fit 
the models to the within-sample data and compare score 
statistics based on the hold-out data to pick a best model. 
Alternatively, one can perform k-fold cross-validation. In 
cross-validation, one splits their data into k∗ sets. (We use 
k∗ to represent the cross-validation folds so as not to con-
fuse it with the k surveys that are conducted at each site.) 
Withholding one of the k∗ subsets, one fits the models to 
the rest of the data, and calculates a scoring rule to meas-
ure how close the models’ predictions are to the hold-out 
data. This process is repeated for each subset of data, 
then the scoring function is summed or averaged over 
the k∗ folds. The model with the best score is identified as 
having the best predictive performance. For most scoring 
rules, low values indicate best performance, but for some, 
such as AUC, high values indicate the best performance. 
After the final model is chosen, it is refit using the entire 
data set so that inference is based on all the data.

There are many options for the scoring rule. One pop-
ular choice for binary data models is AUC, area under 
the receiver operator characteristic curve (Hanley and 
McNeil 1982). AUC is a rank-based rule, similar to the 
Mann-Whitney test, that gives a high score when the pre-
dicted probabilities related to the successes (yi = 1) are 
consistently higher than the probabilities associated with 
the failures (yi = 0); it does not matter how far these 
probabilities are from 0 and 1, only their relative rankings 
matter. AUC has been used to compare and pick models 
in the species distribution modeling literature (Elith and 
Leathwick 2007, Elith and Graham 2009) and is popular 
in the machine learning community (Hastie et al. 2009). 
Within the MSOM literature, AUC has been used by 
Zipkin et al. (2012) and Mattsson et al. (2013), although 
they did not use AUC in the context of cross-validation. 
Despite being a popular scoring rule, it is not local and 
proper (Hernández-Orallo et al. 2012). A scoring rule is 
proper if  its expected value is maximized by the true, gen-
erating model, and is local if  bad predictions lead to 
worse scores (Vehtari and Ojanen 2012). Therefore, we 
also compared models using three other scoring rules 
that are proper: the Brier, Logarithmic (to be consistent 
with rest of paper), and 0–1 scores (Gneiting and Raftery 
2007; formulas in Appendix S1). Brier and 0–1 scores 
have been traditionally used in binary data models such 
as logistic regression, but may not have the same proper-
ties for occupancy models. Thus, we calculated these 
scores mainly to compare and contrast with the other 
scoring rules.

Example: South Platte River Basin

We applied MSOMs to the fish populations of the 
warm-water reaches of the South Platte River Basin in 
Colorado (Fig. 1). Within our study region, there are 26 
native species of which 24 were detected, plus at least 21 
introduced species. Of the 26 native species, eight are 
currently listed as special status by the State of Colorado. 
These include the endangered lake chub (Couesius 
plumbeus), plains minnow (Hybognathus placitus), suck-
ermouth minnow (Hybognathus mirabilis), and northern 
redbelly dace (Chrosomus eos); the threatened brassy 
minnow (Hybognathus hankinsoni) and common shiner 
(Luxilus cornutus); and the species of special concern 
Iowa darter (Etheostoma exile) and stonecat (Noturus 
flavus). The reduction in population size of these native 
fishes may be due to anthropogenic changes including 
stream barriers, altered flow regime, siltation, channeli-
zation, changes in water quality, or introduced species 
(Fausch and Bestgen 1997, Perkin et  al. 2015). 
Understanding the distributions of native plains fish spe-
cies is essential to promoting conservation and potential 
expansion of remaining populations.

The South Platte Basin is fairly homogeneous within 
our study region. High gradient, mountainous streams 
from the Rocky Mountains flow east into the lower gra-
dient transition and high plains zone streams where our 
study took place (Fig. 1). Occupancy probabilities were 
functions of the site-level covariates. We included eleva-
tion as a covariate in our models (ELEV; data available 
online)6 because of its potential role in ecological pro-
cesses and because it was highly correlated with reach 
catchment area (ρ  =  −0.74), latitude (ρ  =  −0.68), and 
longitude (ρ = −0.83). The reach catchment area is the 
accumulated area that contributes to a stream segment's 
flow and is a continuous-valued version of stream order. 
We used an indicator variable to represent whether the 
stream segment was in the transition zone (WEST = 1) 
or high plains zone (WEST  =  0). Because much of the 
state's urban development (including the metropolitan 
area of Denver) occurs along the Front Range corridor 
where the transition zone becomes the high plains zone, 
and that development is likely to affect fish distributions, 
we also included an interaction between elevation and the 
transition zone indicator variable (ELEV·WEST). The 
other site-level covariates were indicator variables repre-
senting whether a stream segment was part of the peren-
nial, connected stream network (POND = 0), whether it 
was a pond (POND-Y = 1), or whether it was an inter-
mittent stream with large areas of dry land between the 
site and the connected stream network (POND-Int = 1), 
and land cover covariates that were thought to influence 
fish distributions: the percent of land area that was crop-
land within a 2000-m buffer (CROPS), the percent of land 
area that was urban development within a 1000-m buffer 
(DVLPD), and the percent of land area that was wetlands 
within a 1000-m buffer (WTLNDS; Jin et al. 2013).

6 �http://ned.usgs.gov.

http://ned.usgs.gov


1764� Ecology, Vol. 97, No. 7KRISTIN M. BROMS ET AL.

Detection probabilities were modeled as functions of 
the covariates described above and the following sur-
vey-level covariates: year as a factor (y2009, y2010, 
y2011, y2012, y2013) to account for the fact that the fish 
distributions and abundances may change from year to 
year due to natural fluctuations and unrecorded changes 
in flow; day-of-year (YDAY) and day-of-year squared 
(YDAY2) to account for potential within-season fluctu-
ations; an indicator variable (SEINE) that equals 0 if the 
survey method was electrofishing and equals 1 if the sur-
vey method was seining; and a variable of the logarithm 
of the maximum count (MAX_CT) associated with the 
sampling occasion.

Our data set consisted of 113 sites each surveyed 1–24 
times, with a median of 4 surveys per site. The original 
data consisted of counts of each species of fish. The 
counts were highly variable and not amenable to an  
N-mixture model (Royle 2004) so we aggregated them 
into the detection-nondetection data. All continuous 
variables were scaled to have a mean of 0 and a standard 

deviation of 1. A full description of the South Platte 
River Basin and the sampling details as related to our 
analysis may be found in Broms et al. (unpublished data).

We fit the MSOM with known species richness to the 
native fish populations of the stream network (fish spe-
cies are listed in Appendix S2). We included the two 
undetected species by augmenting our detection array 
with two rows of zero detections. All model selection and 
assessment procedures were applied to this model. We fit 
five models that included different covariates based on 
previous single-species results (Table  1; Broms et  al. 
unpublished data). One model included all possible covar-
iates (FULL; eight variables to model occupancy and 
seventeen to model detection probabilities), one model 
included only those covariates that were found to signif-
icantly correlate with the five representative species in 
Broms et al. (unpublished data) (LIMITED; one variable 
to model occupancy and six to model detection proba-
bilities), and one model included only those covariates 
that were found to significantly correlate with at least 

Fig. 1.  Our study area within the South Platte River Basin, USA. The sites where sampling took place are represented by stars. 
The gray edging outlines the South Platte River Basin and the black edging is the Colorado State boundary. The white polygon of 
the river basin is the headwaters zone and was excluded from our sampling and analyses. The light gray polygon represents the 
transition zone and the darker gray area represents the high plains zone of the basin. Stream segments that are not connected to the 
main stem of the South Platte were considered to be intermittent sites. Ponds do not have length and therefore are represented on 
the map as the starred points not on a stream segment.
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two of the representative species (MIDDLE-1; one var-
iable to model occupancy and twelve to model detection 
probabilities. We fit a fourth model that included all 
covariates except for the land cover variables 
(MIDDLE-2; five variables to model occupancy and 
fourteen to model detection probabilities). To assess 
whether the model selection criteria could discriminate 
against superfluous variables, we fit a fifth model 
(EXTRA) that was the same as the LIMITED model but 
had an additional, randomly generated standard normal 
variable, to model occupancy probabilities (Table 1).

We used MCMC as implemented in JAGS v3.4.0 
(Plummer 2003) to fit the models. We obtained three 
chains with different starting values for each model for 
150  000 iterations with a burn-in of  50,000 iterations 
and a thinning of  100, leaving a total of  3,000 samples. 
In some settings, thinning does not help with conver-
gence and could be inefficient (Link and Eaton 2012), 
but we thinned because of  data storage limits. We 
assessed convergence through visual examination of  the 
trace, density, and autocorrelation plots. We performed 
a five-fold cross-validation on each of  the five models 
and calculated AUC, Brier, Logarithmic, and 0–1 scor-
ing rules. We assessed the model fit for all five models 
but only present the diagnostics for the model that was 
picked as best-predicting. We calculated the P-value 
associated with the model, plotted the deviance residuals 
for each species and for each site, plotted the deviance 
residuals against each covariate, and created predicted 
occupancy maps.

Finally, we fit two additional MSOMs with unknown 
species richness to better understand how inference 
would change under the model alteration. These models 
included the same covariates as the previously chosen, 
best-predicting model but were fitted to different data 

sets. One model was fit to the native fish data, plus 50 
augmented rows of zero detections to allow for the unde-
tected species, and one model was fit to all of the fish 
detection data, both native and introduced, plus the 50 
augmented rows.

Results

The within-sample model selection criteria, WAIC and 
CPO, followed similar patterns and ranked the models 
based on more parsimonious models given larger, and 
therefore worse, scores (Table 2). WAIC was able to dis-
criminate against the model with the superfluous variable, 
while the CPO criteria gave the model with the superfluous 
variable (EXTRA model) a slightly better ranking than 
the same model without it (LIMITED model, Table  2). 
The 0–1 score also suggested the FULL model, but the 
other cross-validation scores ranked the MIDDLE-2 
model as best-predicting (Table 2). The 0–1 score was low-
est for the FULL model for each hold-out data set, but 
the Brier score, Log score, and AUC suggested different 
models for each hold-out data set, usually agreeing with 
each other but sometimes indicating different models 
(Appendix S3: Table S1). All scores were able to discrim-
inate against the model with the superfluous variable.

Based on the cross-validation scores, we identified the 
MIDDLE-2 model, the model without the land cover 
variables, as best-predicting. The posterior predictive 
P-value associated with this model was 0.94, suggesting 
possible lack of fit. However, the P-value associated with 
the LIMITED model was 0.0003 and the P-value asso-
ciated with the FULL model was 0.993, indicating that 
the statistic is sensitive to model choice and one should 
investigate potential causes of lack of fit further if using 
certain models for inference. Neither the plots of the 
deviance residuals versus the covariates nor the plots of 
the residuals associated with each species revealed where 
the lack of fit occurred (Appendix S3: Fig. S1). Boxplots 
of the residuals associated with each site highlighted 
some areas for improvement in the fit (Appendix S3: Fig. 
S2). Locations with large deviances (sites 7, 36, 89, 102, 
and 154, Appendix S3: Fig. S2) were ponds, intermittent 
streams, or backwaters associated with a larger stream. 
The larger deviances were therefore expected; fewer 
ponds and intermittent streams were surveyed and the 
backwaters were not given a separate category within the 
model although they are expected to provide different 
habitat and have different assemblages than the main 
stream segments.

The plots of the predicted occupancy probabilities 
were more informative (Fig.  2, all species in Appendix 
S4). In general, the predicted occupancies matched 
expert opinion with only a few exceptions. The Green 
Sunfish (Lepomis cyanellus, SNF) is not especially com-
mon or widespread in the higher elevation, transition 
zone although the model has fairly high predictions 
for that region. Other minor exceptions are that the com-
mon shiner (CSH) was historically in the northwest part 

Table 1.  The five models fit to the South Platte fish data and 
the covariates that they included in the occupancy and detec-
tion probability functions.

Model
Occupancy  
variables Detection variables

LIMITED ELEV YEAR, ELEV
MIDDLE-1 ELEV YEAR, ELEV, POND, 

MAX_CT, YDAY, 
YDAY2, CROPS

MIDDLE-2 ELEV, WEST, 
POND, ELEV· 
WEST

YEAR, ELEV, WEST, 
POND, ELEV· WEST, 
MAX_CT, YDAY, 
YDAY2, SEINE

FULL ELEV, WEST, 
POND, ELEV· 
WEST, CROPS, 
DVLPD, 
WTLNDS

YEAR, ELEV, WEST, 
POND, ELEV· WEST, 
MAX_CT, YDAY, 
YDAY2, SEINE, 
CROPS, DVLPD, 
WTLNDS

EXTRA ELEV, RANDOM YEAR, ELEV

Note:  See Example: South Platte River Basin for definition 
of variables.
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of the basin although now it is only found in the west 
and southwest; the Orangespotted Sunfish (Lepomis 
humilis, OSF) was historically common near the border 
of the transition and high plains zones but the model did 
not predict them to occur there; and the Stonecat (STP) 
has only been found near Longmont, Colorado, along 
the Front Range corridor, but based on its life history 
traits, one would expect the stonecat to also occur in the 
lower basin as predicted by the model.

Figure 2 shows the predicted occupancy maps for five 
species and for one of the two native species that went 
undetected during the data collection, the lake chub. 
Tables of the associated coefficient values from the 
MSOM fits and from previous SSOM fits are provided 
in Appendix S4. The standard deviations were still high 
relative to the mean values for many coefficients but had 
realistic ranges. The lake chub (LAC) went undetected 
during the surveys. It was predicted to have very low 

Table 2.  Model selection values for the five models that we fit to the South Platte fish data. Deviance, WAIC, and CPO are with-
in-sample statistics, calculated from fitting the models to the full data set. The 0–1 score, Log score, AUC, and Brier score are 
the averaged values from the 5-fold cross-validation statistics. The model that each statistic suggests as best-fitting or predicting 
is in boldface.

Model Deviance WAIC CPO 0–1 score Log score AUC Brier

LIMITED 7471.1 7780.6 3906.0 807.87 1507.8 0.884 309.63
MIDDLE-1 6904.7 7301.6 3676.6 746.32 1489.2 0.896 295.31
MIDDLE-2 6378.4 6863.5 3470.5 682.32 1436.5 0.908 274.89
FULL 6179.4 6728.4 3405.7 661.21 1602.3 0.877 324.41
EXTRA 7469.2 7782.9 3905.9 807.60 1508.9 0.884 311.33

Fig.  2.  Predicted occupancy probabilities for five representative species, the brassy minnow (BMW), Iowa darter (IOD), 
orangespotted sunfish (OSF), plains topminnow (PTM), and suckermouth minnow (SMM), plus one of the species that went 
undetected during the study, the lake chub (LAC). Scientific and common names for each species may be found in Appendix S2. 
Colored maps of the predicted occupancy and detection probabilities for all native species in the basin may be found in Appendix S4.
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occupancy probabilities throughout the basin but with 
slightly higher occupancy probabilities at higher eleva-
tions and near the border with Nebraska (Fig. 2). The 
lake chub is a glacial relict species that should be found 
in only a few locations at high elevations but not lower 
in the basin, while the plains minnow, which also went 
undetected during the surveys, is only found lower in the 
basin. The model was unable to differentiate the distri-
butions of the two undetected species, but it did correctly 
predict where either of them may occur.

Summaries of the posterior distributions for the mean 
and standard deviations associated with each coefficient 
are provided in Appendix S3: Tables S2 and S3. The 
means and standard deviations associated with the Pond 
indicator variable had wide credible intervals for both 
the occupancy and detection components of the model; 
this is due to the fact that only seven of our sites were 
Ponds and about half of the native species were never 
detected in any of the ponds. The credible intervals 
associated with the standard deviations of the eleva-
tion-transition zone interaction were also wide; sug-
gesting high variability among species or that there 
were few detections to inform this variable (Appendix 
S3: Table S3). The means and standard deviations 
associated with the years had small values, implying 
that on average, detection probabilities changed very 
little from year to year.

The species richness estimated by the MSOM with 
unknown species richness had a median value of 26 spe-
cies (95% credible interval: 24–31), which was the actual 
value, and inference on the coefficients was nearly iden-
tical to the MSOM with known species richness. The 
MSOM with unknown species richness fitted to all detec-
tion data, including both the native and introduced spe-
cies always predicted species richness at M, its maximum 
allowable value, and therefore we did not draw any infer-
ence from that model.

Discussion

The SSOM is often fit to ecological, presence-absence 
data, and is more commonly used than the MSOM. The 
benefits of the SSOM are that they can quickly be fit 
using maximum likelihood in either MARK (White and 
Burnham 1999), PRESENCE (MacKenzie et al. 2002) or 
the “unmarked” package in R (Fiske and Chandler 
2011), and then a best-predicting model can be selected 
via AIC, or models can be averaged (but see Cade 2015). 
However, it is advantageous to fit MSOMs, when appli-
cable, to analyze multi-species data. For example, our 
use of the MSOM led to community-level inference and 
parameter estimates for all species in the community, 
including rarer species, objectives which were not obtain-
able through SSOM analyses.

Two main versions of the MSOM exist and they can 
be used to obtain inference for different ecological 
questions. By fitting a model with unknown species 
richness to homogeneous areas, one can calculate and 

compare biodiversity metrics in pursuit of answering 
macroecology questions. Biodiversity metrics are tradi-
tionally calculated from count data, but there is a grow-
ing body of literature that computes analogous metrics 
from detection-nondetection data for when count data 
is unavailable or unreliable (Dorazio et al. 2011, Chao 
et  al. 2014, Iknayan et  al. 2014, Broms et  al. 2015). 
Fitting the MSOM using a known species richness, as we 
did here, can also be valuable. One can fit the model to 
data from a heterogeneous region to infer how different 
species respond to the characteristics of their environ-
ment by examining the covariate estimates. In this way, 
the MSOM can be used for the same purposes as a 
SSOM but by efficiently using the data, one gains infer-
ence for all species of the system.

Another advantage of the model is that the Bayesian 
framework can help with sparse data situations. Multi- 
species data are likely to be sparse because there are 
often several species that were not detected or rarely 
detected. One way to improve the estimates for small 
sample sizes is through a penalized likelihood, where 
a small amount of bias is introduced to greatly reduce 
the variances (e.g., Moreno and Lele 2010, Hutchinson 
et  al. 2015). In a similar vein, we used weakly inform-
ative priors as a regularization on the model. The weakly 
informative priors helped with collinearity between 
covariates and separation related to indicator variables. 
For example, few surveys were conducted in 2011 and 
the Brassy Minnow was detected at only one site that 
year. Because of the small sample size, the SSOM 
standard error associated with the related coefficient 
was >1000 (Appendix S4: Table S1), a value much 
higher than could reasonably be expected. The weakly 
informative priors associated with the MSOM shrunk 
the standard error to the range we expect for scaled 
variables on the logit-scale. The MSOM also allowed 
us to include all covariates in fitting our models; the 
SSOMs were over-parameterized for some species and 
led to poor estimation for some covariates.

Choice of priors, goodness-of-fit tests, and model 
selection remain areas of active research for Bayesian 
statisticians and occupancy modelers, and there is no 
consensus among statisticians on many of these topics 
(Hooten and Hobbs 2015). To assess goodness-of-fit, we 
used Bayesian P-values and diagnostic plots of the good-
ness-of-fit residuals for model checking. In our applica-
tion, the plots had larger deviance residuals for sites with 
uncommon habitat variable combinations and were 
therefore valuable in highlighting sites with sparse data. 
We recommend that practitioners perform model check-
ing but believe there is room for improvement in finding 
additional, appropriate methods. For example, the 
visual diagnostics could be improved upon by using 
Albert and Chib's residuals and plotting their posterior 
distributions (Albert and Chib 1995) rather than plotting 
the mean values of the residuals.

For model selection, we used cross-validation with 
Log scores to select a best-fitting model based on its 
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predictive performance. Cross-validation is already a 
popular model selection criterion in machine learning 
(Hastie et  al. 2009), and its popularity is increasing in 
ecology. Within-sample criteria WAIC and CPO have 
been proposed for model selection for Bayesian hier-
archical models. These criteria are similar in spirit to 
AIC. Our analyses suggested that they may be suscep-
tible to over-fitting, particularly with the detection 
probability covariates. Because the information criteria 
treated each data point equally, each survey contributed 
equally to the likelihood, thereby causing a few sites 
with extra surveys to be influential. The form of 
cross-validation we used reduced the influence of outlier 
sites because it withheld data by site rather than survey. 
Finally, we note that other options for the model and 
variable selection exist. For example, indicator variable 
selection (e.g., Dorazio et  al. 2011), reversible-jump 
MCMC, and Bayesian model averaging may be used 
for Bayesian multimodel inference although we did not 
investigate these techniques.

Ecosystem-based management often depends on tak-
ing a multi-species approach to set policy standards. 
MSOMs are poised to be a crucial tool for biological 
conservation administered through this type of man-
agement, and therefore it is important for ecologists to 
be familiar with their methods, comfortable implement-
ing the models, and confident in the results that the 
models infer.
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