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      Abstract .      The dynamic, multi- season occupancy model framework has become a 
popular tool for modeling open populations with occupancies that change over time 
through local colonizations and extinctions. However, few versions of the model relate 
these probabilities to the occupancies of neighboring sites or patches. We present a 
modeling framework that incorporates this information and is capable of describing a 
wide variety of spatiotemporal colonization and extinction processes. A key feature of 
the model is that it is based on a simple set of small- scale rules describing how the 
process evolves. The result is a dynamic process that can account for complicated 
large- scale features. In our model, a site is more likely to be colonized if more of its 
neighbors were previously occupied and if it provides more appealing environmental 
characteristics than its neighboring sites. Additionally, a site without occupied neighbors 
may also become colonized through the inclusion of a long- distance dispersal process. 
Although similar model specifi cations have been developed for epidemiological appli-
cations, ours formally accounts for detectability using the well- known occupancy mod-
eling framework. After demonstrating the viability and potential of this new form of 
dynamic occupancy model in a simulation study, we use it to obtain inference for the 
ongoing Common Myna ( Acridotheres tristis ) invasion in South Africa. Our results 
suggest that the Common Myna continues to enlarge its distribution and its spread 
via short distance movement, rather than long- distance dispersal. Overall, this new 
modeling framework provides a powerful tool for managers examining the drivers of 
colonization including short-  vs. long- distance dispersal, habitat quality, and distance 
from source populations.   

   Key words:    Acridotheres tristis ;    citizen science ;    colonization ;    Common Myna ;    dynamic occupancy 
 model ;    extinction ;    invasive species ;    multi-season model ;    Southern African Bird Atlas Project ;    spatiotemporal 
processes ;    species distribution maps.    

    INTRODUCTION 

 Invasive species are a problem worldwide: damaging 
crops, contributing to the loss of biodiversity, and 
causing disturbances. They are generally seen as the 
second biggest threat to biodiversity, after habitat 
destruction (Wilcove et al.  1998 , Pejchar and Mooney 
 2009 ), and the economic costs to control them are 
great. For example, the Working for Water program 
in South Africa was recently given a 3- yr budget of 
R7.8 billion (~USD660 million) to control invasive 
plants near Cape Town (van Wilgen et al.  2012 ). 
Increased knowledge about the causes of invasive spe-
cies’ spread could reduce the damage incurred by giving 

managers an understanding of what is driving their 
expansion. 

 More broadly, ecologists have sought to understand 
colonization and extinction patterns for decades. The 
dynamic occupancy model (MacKenzie et al.  2003 ), 
alternatively called the multi- season occupancy model, 
has become a widely used model to learn about the 
colonization and extinction processes. Occupancy mod-
els rely on a hierarchical framework (either implicit 
or explicit) to account for species that may be present 
at a site but go undetected. The multi- season version 
of the model specifi es occupancy probabilities as func-
tions of colonization and extinction probabilities and 
the occupancy status of a site from the previous time 
step. However, the original version of the multi- season 
model does not contain an explicit spatial component 
nor a spatiotemporal interaction. Depending on the 
species and the dynamic process, it may be more 
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appropriate to acknowledge within the model that the 
density of occupied sites and the distance between 
occupied sites will play a role in the colonization of 
unoccupied sites and the persistence of those already 
colonized. 

 Explicit spatiotemporal relationships have been rec-
ognized and incorporated in several recent variations 
of the multi- season occupancy model (Bled et al.  2011 , 
 2013 , Yackulic et al.  2012 , Eaton et al.  2014 , Sutherland 
et al.  2014 ). The Yackulic et al. ( 2012 ) and Eaton 
et al. ( 2014 ) models are most similar to the multi- 
season model fi rst introduced by MacKenzie et al. 
( 2003 ), but they add an autocovariate term to the 
colonization and extinction probability functions. The 
models incorporate and estimate coeffi cients for the 
autocovariates as if they were fi xed effects, and are 
fi t using PRESENCE (MacKenzie et al.  2003 ). The 
autocovariate is a weighted average of the occupancy 
probabilities of a site ’ s neighbors from the previous 
time step. Eaton et al. ( 2014 ) expand on the work of 
Yackulic et al. ( 2012 ) by including a provision that 
the autocovariate is additionally weighted by the pro-
portion of habitat available. For their study, they 
modeled the occurrence of an endangered marsh rabbit 
in the Lower Keys, Florida, USA, where the available 
habitat is limited and highly fragmented due to de-
velopment and bodies of water. Therefore, habitat 
weighting was necessary for their species. Bled et al. 
( 2011 ,  2013 ) incorporated a similar autocovariate, but 
used a Bayesian framework. Bled et al. ( 2011 ) weighted 
the neighbor occupancy status based on sines and 
cosines to account for directional spread, and also 
extended the MacKenzie et al. ( 2003 ) dynamic occu-
pancy model to include separate colonization and 
recolonization parameters. Bled et al. ( 2013 ) extended 
the model by having two nested time frames during 
which there were separate colonization and extinction 
processes. 

 Sutherland et al. ( 2014 ) took a different approach 
to incorporating spatial information into the dynamic 
process by relating the colonization and extinction 
functions to age class abundance data and metapop-
ulation theory. This approach leads to their colonization 
function having a different form than the MacKenzie 
et al. ( 2003 ) multi- season model. The Sutherland et al. 
( 2014 ) model assumes that the species of interest has 
a fragmented metapopulation structure and therefore 
it relies on the availability of abundance data and 
variation in the distance between patches. 

 We present a model similar to those just described 
in that colonization probabilities are a function of the 
number of neighboring sites that are currently occupied, 
but we develop the colonization probabilities from 
diffusion and advection processes. This induces an 
explicitly mechanistic colonization process that is similar 
to that of Sutherland et al. ( 2014 ), but stems from 
different theory and utilizes different types of data. 
We adapt a continuous diffusion model to detection/

non- detection data collected on discrete spatial and 
temporal units as in Hooten and Wikle ( 2010 ), but 
additionally account for imperfect detection. We ex-
plicitly account for two types of colonization: neigh-
borhood colonization and long- distance dispersal. 

 We introduce the model, validate it through a sim-
ulation study, and then apply it to study the Common 
Myna ( Acridotheres tristis , hereafter “myna”) invasion 
using data from the second Southern African Bird Atlas 
Project (SABAP 2), which is a large database of bird 
detections/non- detections in southern Africa from 2007 
to the present. The myna, a starling native to Asia, is 
one of the world ’ s worst invasive species (Lowe et al. 
 2000 ). It was introduced to Durban, a city in the 
Southeast corner of South Africa, in 1902 (Peacock 
et al.  2007 ), stabilized in that region, and then under-
went periods of rapid expansion. The myna is now 
widespread in the eastern half of South Africa. The 
myna ’ s distribution has been noted anecdotally, but the 
drivers of its expansion have not been studied empir-
ically or statistically. Our model is the fi rst statistical 
model to determine what may be driving the myna ’ s 
expansion and what its rates of colonization are. The 
myna may compete with native species; thus our 
 inference has important conservation implications.  

  METHODS 

  Models 

 We borrow the notation of other Bayesian occupancy 
models (e.g., Royle and Kéry  2007 , Royle and Dorazio 
 2008 ), and let  y   i,j,t   represent the detection of the species 
of interest on survey  j  ∈ {1, …, J  i,t  } of site  i  ∈ {1, 
…,  m } during time period  t  ∈ {1, …,  T }, and  z   i,t   be 
the true occurrence of the species at site  i  during time 
period  t. J   i,t   is the number of surveys of site  i  during 
time period  t ; this number may vary among sites and 
time periods.  M  is the number of sites for which we 
will draw inference; only a subsample  m  of  them need 
to be surveyed to gain inference for the entire region. 
We use  T  to denote the number of time periods. Each 
time period is assumed to be a closed season during 
which occupancies do not change. The probability of 
the species occurring at site  i  during time  t  is 
 P ( z   i,t   = 1) = ψ  i,t  , which may be a function of site- level 
covariates such as elevation. If  the species does occur 
at site  i , then  z   i,t   = 1 and the detection probability is 
 P ( y   i,j,t   = 1 |  z   i,t   = 1) =  p   i,j,t  . The detection probability 
may be a function of site- level covariates and survey- 
level covariates, such as time of day of the survey. 
Assuming a logit link relationship between the detection 
probabilities and the covariates, the occupancy model 
is  

  (1)       

    (2)       

yi,j,t ∼Bernoulli(zi,tpi,j,t)

logit(pi,j,t)=x′
i,j,t𝛃p
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    (3)       

  where  x   i,j,t   is the set of covariates that affect detection 
for survey  j  of site  i  at time  t . 

 The function associated with the occupancy prob-
abilities, ψ  i,t  , varies depending on whether  t  =   1 (an 
initial condition) or if it is a subsequent time period. 
For the fi rst time period,  t  =   1, the occupancy prob-
abilities are modeled as in a spatially explicit single- 
season occupancy model such that 

   (4)       

  In this case,  x  ψ, i ,1  is a separate set of covariates from 
Eq.  2 , although a site- specifi c covariate may be a 
member of both sets. Eq.  4  includes a spatial random 
effect (η  i  ) to account for residual spatial patterns that 
are not captured by the covariates. In analyzing the 
myna data, we included a restricted spatial regression 
(RSR) random effect (Hughes and Haran  2013 , Johnson 
et al.  2013 ), which is similar to an intrinsic conditional 
autoregressive (ICAR) variable and is discussed further 
in the  Data  section. 

 We let occupancy probabilities in subsequent time 
periods depend on the occurrence patterns from the 
previous time period (Hooten and Wikle  2010 ). If site 
 i  was previously occupied, then the probability of it 
remaining occupied at time  t  is  ϕ   i,t  , the persistence 
probability. Often occupancy dynamics are written in 
terms of local extinctions; the persistence probability, 
alternatively called the survival probability, is the com-
plement of the local extinction probability and is more 
commonly used in the Bayesian literature (MacKenzie 
et al.  2003 , Kéry et al.  2013 ). If site  i  was not oc-
cupied in the previous time period and neither were 
any of its neighbors, then the probability of it becoming 
occupied at time  t  is γ  i,t  , the long- distance dispersal 
probability. If site  i  was not occupied in the previous 
time period but at least one of its neighbors was, 
then the probability of it becoming occupied is   ̄di,t   , 
the neighborhood colonization probability. Thus, the 
occupancy probabilities are formulated as a mixture: 

   (5)       

  where   I
i,t

    is an indicator variable that equals 1 if 
site  i  has at least one neighbor that was occupied in 
year  t , and equals 0 otherwise (Hooten and Wikle 
 2010 ). 

 The persistence probability,  ϕ   i,t  , and the long- distance 
dispersal, γ  i,t  , may be modeled as functions of a time-  
or space- varying covariate, for example: 

   (6)       

    (7)       

  Additionally,  ϕ   i,t   can be a function of the density of 
nearby occupied sites at the previous time step, similar 

to the neighborhood colonizations that we will de-
scribe. In studying the myna invasion, we assume 
that  ϕ   i,t   and γ  i,t   are constant across sites and time 
periods (i.e.,  ϕ   i,t   =  ϕ  and γ  i,t   = γ), but we allow the 
neighborhood colonization probability,   ̄di,t   , to vary 
among sites and time periods as a function of the 
number of neighbors that were occupied in the pre-
vious time step. The choice of neighborhood structure 
is project specifi c. For example, it may include all 
sites within a specifi ed distance, or it may be all 
sites that share a border. In our application, the 
sites have a gridded design and we use the queen ’ s 
defi nition of neighborhood (Fig.  1 ). In this design, 
most sites have eight neighbors. If a site exists on 
the edge of the area of inference, it will have fewer 
neighbors; although the model could be expanded to 
allow for neighborhood colonization from outside the 
study area. The probability of site  i  being colonized 
by its neighbors is a function of the neighbors pre-
viously occupied, such that 

    (8)       

  Neighborhood colonization (Eq.  8 ) is a function of 
the vectors   z

i,t
    and  d   i  , both with length equal to the 

number of neighbors of site  i  (derived in Appendix 
S1). An element  k  of   zi,t

    equals 0 if neighbor  k  was 
not occupied and equals 1 if the neighbor was occupied 
at time  t . Each element  k  of the colonization vector, 
 d   i  , represents the probability of site  i  being colonized 
by neighbor  k . These probabilities are constant across 
time but may or may not be constant across space. 
They may be modeled in one of two ways: homoge-
neous or gradient- based colonization. 

 In the homogeneous neighborhood colonization model, 
we assume that local colonization patterns do not vary 
across the landscape. This dispersal pattern might indicate 
that the invasion generally happens along a latitudinal 

zi,t ∼Bernoulli(ψi,t)

logit(ψi,1)=x′
ψ,i,1𝛃ψ +𝜂i.

ψi,t+1 = zi,t𝜙i,t+
(

1−zi,t

)
I
i,t

d̄i,t+
(

1−zi,t

)(
1−I

i,t

)
γi,t

logit(γi,t)=β
γ,0+β

γ,1x
γ,i,t

logit(𝜙i,t)=β
𝜙,0+β

𝜙,1x
𝜙,i,t.

d̄i,t =1−exp
(

z′
i,t

log
(
1−di

))
.

 FIG. 1 .              The  k  =   8 neighbors of a site for data with a gridded 
design, assuming a fi rst- order, queen ’ s defi nition of 
neighborhood, in which most sites have eight neighbors. 
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or longitudinal trend. The  d   i   vector is the same for each 
site  i , so  d   i   ≡  d  for all  i , but each element  k  of the 
vector may be a different probability. For example (see 
Fig.  1 ), if  d  = (0, 0, 0, 0.05, 0.05, 0.2, 0.2, 0.2)′, it 
would indicate that the species is colonizing its northern 
neighbors with greater probability. 

 In the gradient- based neighborhood colonization 
model, the colonizations are functions of a covariate 
and whether site  i  has better or worse habitat than 
its neighbors:  

  (9)       

  The  d   i   vectors are different for each site because site 
 i  will have different habitat in relationship to its neigh-
bors. The  x   d , i   contain the gradient of the habitat var-
iable between site  i  and its  k  neighbors; each element, 
 x   d  ,  i  ,  k  , of the vector is equal to site  i  ’ s  k th neighboring 
covariate value minus site  i  ’ s covariate value, divided 
by the distance between sites to account for the 
 possibility of varying distances between neighbors: 

   (10)       

  We use the differences in habitat as opposed to the 
habitat values themselves because the differences 
 explicitly account for diffusive fl ow; it is a discrete 
approximation of the derivative of the potential surface 
from which the model was derived. Such models have 
also been used to study the spread of diseases (Hooten 
et al.  2010 a  ) and animal movement (Hooten et al. 
 2010 b  , Hanks et al.  2011 ), and are fundamentally linked 
to the movement of individuals and populations (Hooten 
et al.  2013 ). Extensions to the gradient- based function 
(Eq.  9 ) could include the local habitat variables them-
selves in addition to, or instead of, the differences. 
In the simpler case, Eq.  10  could be replaced with 
 x   d  ,  i  ,  k   =  x   k   for each element  k  in  x   d , i  . 

 The full models for both the homogeneous and 
gradient- based colonization, as applied to the myna, 
are presented in Appendix S2.1. Appendix S2.2 can 
be used as a glossary for the model symbols, and 
Appendix S2.3 provides the associated JAGS (Plummer 
 2003 ) code to fi t the models. 

 As with most occupancy models, we assume that 
the detection probabilities are conditionally independ-
ent of each other and that there are no false positives 
(i.e., the possibility that a myna was reported as 
detected but, in truth, did not occupy the site of 
interest). Although these assumptions may not be 
valid in all situations, the framework we present can 
be generalized to accommodate these measurement 
discrepancies.  

  Data 

 The Southern African Bird Atlas Project, SABAP 
2, is a large citizen science database of bird lists 

collected by volunteer bird- watchers from July 2007 
to the present ( available online ). 9  Each bird list rep-
resents one survey of one site; non- detections are de-
duced by a species’ absence from the list. For each 
survey, a volunteer spends a minimum time period of 
2 h of intensive birding up to a maximum time period 
of 5 days conducting each survey and, in that time, 
all habitat types in the grid cell were expected to be 
visited. 

 The sites of SABAP 2 are 5- min latitude by 5- min 
longitude grid cells, approximately 8 × 7.6 km each 
(Harebottle et al.  2007 ). South Africa is covered by 
17 444 of these sites. We aggregated the data into 
quarter degree grid cells (QDGC) to compare our 
model results against an earlier version of the bird 
atlas project, SABAP 1, which occurred mainly from 
1987 to 1991. Each QDGC is 15- min latitude by 15- 
min longitude and is equal to nine of the smaller grid 
cells. A total of 1946 QDGC cover South Africa. We 
limited our analyses to the eastern half of South Africa 
plus Lesotho and Swaziland because the myna exists 
primarily in that study area (Fig.  2 ). Therefore, our 
analysis included 1068 of the QDGC sites. Each year, 
between 613 and 862 of these sites were surveyed at 
least once. Maps of the numbers of surveys, myna 
detections, and myna reporting rates by year are pro-
vided in Appendix S3.  

 The myna data are indexed by six time periods, 
one for each year of data starting in January 2008, 
and ending in December 2013. We fi t the diffusion 
occupancy models to the data from January 2008–
December 2012, with each year of data representing 
one time period. We held out the 2013 data to 

logit(di)=βd,0+βd,1xd,i.

xd,i,k =
xk−xi

dist(i,k)
.

 FIG. 2 .              The black outline in the map shows the sites included 
in our analyses. The gray boundaries delineate the separate 
countries of Lesotho and Swaziland. Each square is one 
quarter degree grid cell ( QDGC ) and is approximately 
25 km × 25 km. The map shows the total number of detections 
of the Common Myna ( Acridotheres tristis ) at each site, for all 
years combined. 

   9        http://sabap2.adu.org.za/   
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compare the diffusion occupancy models’ predictive 
performance against the estimated occupancies from 
a single- season occupancy model. The number of 
times that sites were surveyed was variable but the 
median number of surveys per site was fi ve. To pre-
vent detection probability coeffi cients from being 
dominated by a few well sampled sites, the number 
of surveys per site per year was limited to 15. 
Preliminary analyses showed that inference was not 
sensitive to this censoring. 

 In an exploratory analysis, we identifi ed an initial 
set of covariates affecting myna occurrence by fi tting 
single- season, nonspatial occupancy models for the 
2008 data using the  unmarked  package in R (Fiske 
and Chandler  2011 ) and used AIC to select the best 
predictive model. The following site- specifi c covariates 
were considered: the logarithm of the human popu-
lation density (LOG HUMAN; Balk et al.  2011 ); the 
proportion of the site that was pastureland 
(PASTURE; Ramankutty et al.  2010 b  ); the proportion 
of the site that was cropland (CROP; Ramankutty 
et al.  2010 a  ); the proportion of the site that was in 
a protected area such as a national park or game 
reserve (PA; Rouget et al.  2004 ); and the distance 
from the site ’ s centroid to the center of the closer 
of Johannesburg or Durban (DIST). We included 
these variables because it has been proposed that the 
myna ’ s distribution is most associated with human 
population density and habitat transformations and 
because its two source populations have historically 
been Johannesburg and Durban (Peacock et al. 
 2007 ). In addition to the site- specific covariates, 
the following survey- specific covariates were con-
sidered when building the detection probability 
function: the log of the number of hours spent 
intensively birding for the checklist (INTENSIVE); 
the log of the total numbers of hours spent on 
the checklist (TOTAL), which will include the in-
tensive hours birding plus time spent passively 
birding; and the number of species found on the 
bird list (NSPP), scaled by its mean and standard 
deviation. 

 After the best nonspatial model for 2008 was se-
lected, a spatial random effect was added to the oc-
cupancy component of the model. The spatial occupancy 
models were fi t using the  stocc  package in R (Johnson 
 2013 ). We added an RSR (restricted spatial regression) 
random effect to account for residual spatial patterns 
while minimizing the confounding with the fi xed effects 
of interest (Broms et al.  2014 ). RSR is a dimension- 
reduced version of an  intrinsic conditional autoregressive  
(ICAR) model. Thus, our model for the initial time 
period was 

   (11)       

  where  K  are eigenvectors associated with the Moran 
operator matrix (Hughes and Haran  2013 ) and  Q  is 
the ICAR precision matrix whose elements are −1 if 
sites are neighbors, 0 if sites are not neighbors, and 
is equal to the number of neighbors of each site along 
its diagonal. We restricted the random effect to include 
250 eigenvectors following the recommendations of 
Broms ( 2013 ). Further details of the spatial component 
of this model may be found in Johnson et al. ( 2013 ) 
and Hanks et al. ( 2015 ). Heuristically, our  Kα  serves 
as an autocovariate relating a site to the occupancy 
status of its neighbors. If parameters became nonsig-
nifi cant with the addition of the spatial covariate, they 
were dropped from the model. We then fi t three dif-
ferent diffusion occupancy models containing neigh-
borhood colonization probabilities that were specifi ed 
as follows. Two models used the homogeneous neigh-
borhood colonization, one allowed the neighbor col-
onization probabilities to vary among neighbors, and 
one assumed a constant neighborhood colonization in 
each direction. The other model used the gradient- 
based neighborhood colonization, as in Eq.  9 , with 
human population density as the environmental co-
variate. For simplicity, we assumed constant persistence 
and long- distance dispersal probabilities across time 
and space. The covariates that infl uenced detection 
were selected with the 2008 single season model and 
then the same covariates were used for the observation 
process for subsequent years. 

 Relatively vague priors were specifi ed for all parameters, 
as described in Appendix S2.1. We obtained three MCMC 
chains for 160 000 iterations with a burn- in of 10  000 
iterations and a thinning rate of 20, resulting in a total 
of 22  500 samples for each model. The model fi ts  required 
about 31 h.   

  MODEL SELECTION 

 We compared models using out- of- sample validation 
with a logarithmic scoring rule to assess predictive per-
formance (Gneiting and Raftery  2007 , Hooten and Hobbs 
 2015 ). We predicted 2013 occupancies and detections 
using the posterior predictive distributions and compared 
these 2013 predictions against the true detections from 
2013. In our calculations, we only compared sites that 
had at least one survey conducted in 2013. For each 
iteration  s  of the MCMC, we calculated the log- score 
as negative the logarithm of the integrated likelihood: 

   (12)       

    (13)       

  where  M  is the number of sites with surveys conducted 
in 2013 and  J   i   is the number of surveys associated 
with that site. The log score was calculated as the  posterior 

logit(𝛙1)=X
ψ
𝛃
ψ
+K𝛂

𝛂∼Normal
(

0,𝜎2
(

K′QK

)−1)

L
(s)

log
=−

M∑
i=1

Ji∑
j=1

log[yij|ψ(s)
i ,p(s)ij ]

=−

M∑
i=1

Ji∑
j=1

yijlog(ψ(s)
i p(s)ij )+(1−yij)log(1−ψ

(s)
i p(s)ij )
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mean of   Llog   . The lowest logarithmic score  indicated 
the best predictive model.  

  SIMULATION STUDY 

 We conducted a simulation study to investigate the 
convergence and inference characteristics for the dy-
namic components of our model. Four scenarios were 
tested: long- distance dispersal was either constant or 
a function of a covariate, and the neighborhood dis-
persal was either homogeneous or gradient-based. 

 For all scenarios, we assumed a grid of 
30 × 30 = 900 sites, of which a random subset of 
75% of the sites were surveyed. Following the approach 
of Yackulic et al. ( 2012 ), we simulated data using a 
constant detection probability of 0.5 and assumed four 
surveys per site. Occupancy probabilities for the fi rst 
year were a function of the scaled  x - coordinate of 
the data: 

   (14)       

  These parameters led to occupancy probabilities ranging 
from 0.02 to 0.73, with a median probability of 0.18. 
The persistence probability,  ϕ , was set at 0.90. 

 For half of the simulations, long- distance dispersal, 
γ, was set at 0.05; for the other half of the simula-
tions, it was a function of the scaled  x - coordinate: 

   (15)       

  leading to a range of long- distance dispersal proba-
bilities from 0.01 to 0.21, with a median of 0.05. For 
half of the simulations, neighborhood dispersal was 
homogeneous, with neighborhood colonization prob-
abilities of (0.20, 0.20, 0.02, 0.20, 0.02, 0.02, 0.02, 
0.02) for  k  =   1, …, 8, respectively. These probabilities 
imply that a site was most likely colonized from the 
northwest direction, and its range is therefore expanding 
in the southeast direction. The other set of simulations 
had gradient- based neighborhood colonizations with 

   (16)       

  The  x    d , i   were based on the scaled  x - coordinate, and 
were calculated using Eq.  10 . The gradient- based model 
had neighborhood colonization probabilities range from 
0.005 to 0.79 with a median of 0.12. 

 For all scenarios, occupancy probabilities for the 
fi rst year were fi t using: 

   (17)       

  where  η  is an RSR spatial random effect. This model 
specifi cation was different from the data generation 
to mimic reality in that all environmental variables 
affecting occupancy may not be known or measurable. 
The code to generate the data and fi t the models may 
be found in the Supplement. 

 To investigate the sensitivity under differing data 
scenarios, 10 simulations were performed for each 
scenario. Each model fi t included three chains with 
5000 iterations each, all thinned by fi ve and with a 
burn- in of 500 samples, leaving a total of 2700 samples 
for approximating posterior quantities. The gradient- 
based model simulations required 27–30 min and the 
model with homogeneous neighborhood colonizations 
required 42–45 min on a 3.5 GHz Intel Core i7 desk-
top computer. Parameter estimates were obtained as 
the medians from the marginal posterior distributions. 
To determine model performance, relative biases were 
then calculated as 

   (18)       

  where the averages are taken over the  S  simulations.  

  RESULTS 

  Simulation study 

 The simulation study demonstrated that the model 
performed well for a variety of data sets. For all 
scenarios, the number of sites occupied each year was 
estimated accurately (Appendix S4). The persistence 
probability and detection probability estimates were 
also unbiased. The models were able to recover the 
directionality of the neighborhood colonizations, but 
the estimates of the long- distance dispersal and neigh-
borhood colonization probabilities were variable with 
no distinct patterns in the biases, suggesting less 
 precision in their estimates.  

  Myna results 

 The detection probabilities were positively corre-
lated with the number of species reported, human 
population density, and the proportion of the site 
that was cropland. The positive correlation with 
number of species probably is related to observer 
skill level. Detection was negatively correlated with 
the proportion of the site that was part of a pro-
tected area and the distance from Johannesburg or 
Durban (Table  1 ). The myna occupancy probabilities 
of year 2008 were originally correlated with the 
distance from Johannesburg or Durban and the pro-
portion of the site that was pasture. Once the RSR 
random effect was included, only the distance 
 covariate affected occupancies. The probability of 
occupancy increased with proximity to the city centers 
(Table  1 ).  

 The dynamic models produced very similar esti-
mates for the parameters that overlapped among 
them. The long- distance dispersal probability was 
estimated at 0.02, with a 95% credible interval of 
0.002–0.06 for the homogeneous models and a 95% 

logit(𝛙1)=−1.5+1.5x.

logit(𝛄)=−3+1x

logit(di)=−2+2xd,i.

logit(𝛙1)=β0+𝛈

Bias=
1
S

S∑
s=1

θ̂s−θ

θ
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credible interval of 0.002–0.05 for the gradient- based 
model. The persistence probability was estimated at 
0.94, with a 95% credible interval of 0.92–0.95 for 
all models. 

 In the homogeneous model with constant neighbor-
hood colonization, the neighborhood colonization 
probability was 0.09, with a 95% credible interval of 
0.08–0.11 (Appendix S5: Table S2). 

 In the homogeneous model with varying neighbor-
hood colonizations, those probabilities ranged from 
0.03 to 0.21 (Appendix S5: Table S1). Higher coloni-
zation probabilities related to neighbors 6 and 7 implies 
that a site is most likely to be colonized from its 
southern and southwestern neighbors. Therefore, the 
range of the myna is mostly expanding in the north 
and northeast directions according to this model. 

 The gradient- based model with neighborhood colo-
nization as a function of human density estimated the 
neighbor colonization probabilities to range from 0.0005 

to 0.12, with a median probability of 0.003. The neg-
ative coeffi cient associated with the human population 
suggests that the myna is dispersing away from the 
large cities into the less populated surrounding areas, 
possibly because the myna populations are already 
saturated in the more heavily populated sites: Fig. 3 
was created from Eq. 9 and provides a visualization 
of the neighborhood colonizations and the potential 
routes along which the myna expands its range.  

 The gradient- based model had the best predictive 
performance, with a log- score equal to 2418.75. In 
contrast, the homogeneous model with homogeneous 
colonizations had a log- score of 2422.09 and the ho-
mogeneous model with varying colonizations had a 
log- score of 2424.72. 

 All models estimated an increase in the number of 
sites becoming occupied over time. For the homoge-
neous model with varying colonizations, the estimated 
number of sites occupied in 2008 was 581 and increased 

 Table 1 .    Parameter estimates from the best- fi tting model for the Common Myna ( Acridotheres tristis ) data from Africa, which used 
gradient- based neighborhood colonizations as a function of  human density. 

 Parameter  Median  SE  95% CI 

 Lower  Upper 

 Detection coeffi cients 

 Intercept  −1.81  0.157  −2.14  −1.51 

 NSPP  0.45  0.017  0.42  0.49 

 PA  −0.60  0.020  −0.63  −0.56 

 DIST  0.26  0.013  0.23  0.28 

 CROP  0.50  0.116  0.25  0.72 

 LOG_HUMAN  −1.35  0.138  −1.63  −1.09 

 2008 occupancy coeffi cients 

 Intercept  5.60  0.810  4.18  7.38 

 DIST  −1.84  0.278  −2.45  −1.35 

 2008 spatial parameter, σ  5.46  1.091  3.61  7.90 

 Persistence,  ϕ   0.94  0.008  0.92  0.95 

 Long- distance dispersal, γ  0.02  0.014  0.002  0.05 

 Neighborhood colonization 

 Intercept  −2.28  0.110  −2.51  −2.07 

 LOG_HUMAN  −0.38  0.206  −0.83  −0.01 

 Number of sites occupied 

 Year 2008  582  20.1  544  623 

 Year 2009  628  16.8  597  663 

 Year 2010  670  16.1  640  703 

 Year 2011  707  16.7  675  740 

 Year 2012  748  18.6  712  785 

 Year 2013  780  22.5  735  824 

    Note:  Abbreviations are NSPP, number of species on the bird list; PA, proportion of the site that was in a protected area such as a 
national park or game reserve; DIST, distance from the site ’ s centroid to the center of the closer of Johannesburg or Durban; CROP, 
proportion of the site that was cropland; LOG HUMAN, logarithm of the human population density.   



January 2016 DIFFUSION OCCUPANCY MODEL 201

to 785 by the end of 2013 (Appendix S5: Table S1), 
with a rate of spread faster in the beginning: 8.6% 
in year 2008, and ending at 4.2%. The number of 
new sites becoming occupied each year decreased from 
a high of 50 new sites from 2008 to 2009, to a low 
of 32 new sites from 2012 to 2013. The homogeneous 
model with constant colonization was very similar 
(Appendix S5: Table S2). For the gradient- based model, 
the estimated number of sites occupied in 2008 was 
582 and increased to 780 by 2013 (Table  1 , Fig.  4 ), 
suggesting rates of spread from 8.1% to 4.3% a year. 
The number of new sites similarly decreased from a 
high of 46 to a low of 32 by the end of the study 
period. The rate of spread had decreased, but remained 
greater than zero.    

  DISCUSSION 

 Range expansions are often a focus of mathematical 
ecologists, but usually in the context of continuous 
space and integrodifference equations (e.g., Skellam 
 1951 , Van den Busch et al.  1992 , Kot et al.  1996 , 
Neubert et al.  2000 , Shigesada and Kawasaki  2002 ). 
We merged a Bayesian occupancy model with a discrete 
form of diffusion model to learn how an invasive 
species spreads across a landscape, but for data col-
lected on relatively small- scale areal units or patches. 
The colonization process was a function of how many 
neighbors of a site were occupied in the previous time 
period; a site was more likely to be colonized if more 
of its neighbors were formerly occupied and if it had 
better habitat than neighboring sites, but a site could 
also be colonized through long- distance dispersal if it 
did not have occupied neighbors. These explicit con-
nections were intuitive and provided insight into the 
ecological processes. In particular, this model was 
sensible for the myna, a species whose range was 
 believed to be expanding. 

 The occupancy model is fl exible and is gaining 
 familiarity with ecologists (Bailey et al.  2014 ), whereas 
the Bayesian hierarchical framework allows for latent 
states and added complexity through its conditional 
probabilities (Hooten et al.  2003 , Latimer et al.  2006 ). 
This framework allowed for occupancy in year 1 to 
be a function of site- specifi c covariates and a spatial 
random effect. Because our data collection was initiated 
after the myna had already begun its spread in South 
Africa, it was important to recognize the relationships 
that had developed, and the spatial autocovariate, 
incorporated through the RSR random effect, acknowl-
edged that there were unmeasured processes additionally 
affecting the myna ’ s distribution. 

 The derivation of the colonization process from a 
diffusion model sets our model apart from other spa-
tially explicit, dynamic occupancy models (Bled et al. 
 2011 ,  2013 , Yackulic et al.  2012 , Eaton et al.  2014 , 
Sutherland et al.  2014 ). However, the different frame-
works may be complementary, as they represent dif-
ferent underlying mechanisms. Adding an autocovariate 
to the temporal components of the model as in Bled 
et al. ( 2011 ,  2013 ), Yackulic et al. ( 2012 ), and Eaton 
et al. ( 2014 ) is computationally convenient but less 
mechanistic. This may or may not be desired, depending 
on the data and research questions. Sutherland et al. 
( 2014 ) used count data collected on discrete patches 
and explicitly modeled the relationship among those 
patches from metapopulation theory. Our model relied 
on conventional spatiotemporal modeling concepts (e.g., 
Wikle and Hooten  2010 , Cressie and Wikle  2011 ) and 
mathematical theory for the movement of animals 
(Turchin  1998 ). 

 One metric derived from our model was a potential 
surface of spread from the neighborhood colonizations 
(Fig.  3 ). As far as we are aware, previous studies 
using multi- season occupancy models have not included 
such gradient maps for the colonization or extinction 
processes. These dispersal gradient maps can inform 
managers about which sites are more likely to be 
colonized in the future, and hence where to focus 
containment resources. For the myna, the map showed 
the fl ow of colonizations and the spread of the myna 
northward into Zimbabwe, eastward into Mozambique 
and Swaziland, and westward into South Africa ’ s 
 interior. The myna ’ s range expansion probably will 
continue along these routes in the near future. Indeed, 
there are incidence records of the myna in parts of 
Botswana, Zimbabwe, and Mozambique (Peacock et al. 
 2007 ). 

 Previous studies suggest that human population 
densities and land transformations are positively cor-
related with the myna ’ s spread (Peacock et al.  2007 , 
Hugo and Rensburg  2009 ). Although there was some 
evidence from the 2008 model that the proportion of 
pasture was negatively associated with myna occurrences 
and some evidence from the 2013 model that protected 
areas are negatively associated myna occurrences, these 

 FIG. 3 .              Gradient surface of neighborhood colonizations. The 
myna is likely to disperse to the darker areas. Gray sites are the 
sites of known occurrence in 2008. 
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parameters became nonsignifi cant when spatial structure 
was added to the models. The detection parameters 
suggested that myna were more likely to be detected 
in more populated areas and croplands, and were less 
likely to be detected in protected areas. These results 
may be due to observers’ expectations of where they 
might see myna, or it may be due to different abun-
dance levels of myna among the landscapes. Therefore, 
our fi ndings supported the relationship between mynas 
and human population density, but were less conclusive 
about how land transformations related to the myna 
distribution. 

 In the models, the long- distance dispersal probability 
was estimated to be 2% and the lower bound of its 
95% credible interval was close to 0%. Therefore, most 
if not all of the myna ’ s range expansion was through 

its neighborhood colonization. The gradient- based occu-
pancy model fi t the 2013 data slightly better than the 
homogeneous model, lending further support to the sug-
gestion that human populations are driving the myna 
populations. However, the coeffi cient related to human 
population density was negative, so the myna expansion 
began in areas of high human population density, but 
then expanded away from densely populated areas. 

 Finally, the models suggest that the myna ’ s range 
continues to expand at a rate of more than 4% a year. 
Because the myna population has not yet stabilized, 
resource managers should continue to be aware of the 
likelihood of myna expansions, and biologists need to 
be aware of the nonequilibrium resulting from the lack 
of stabilization when trying to determine  occupancy–
environment relationships (Yackulic et al.  2015 ). 

 FIG. 4 .              The mean occurrence predictions (occupancy probabilities) for mynas for each site and year; these predictions are similar 
to the conditional occupancy probabilities estimated through a likelihood framework. 
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 Many other extensions of our model are possible. 
For example, the process component of the model 
could be adapted to accommodate other diffusion 
processes (Wikle and Hooten  2010 ), such as jump- 
diffusion (e.g., Li et al.  2014 ). Given that the method 
is based on a Lagrangian implementation of a partial 
differential equation, it is also possible to use optimal 
mathematical solution methods such as “homogeniza-
tion” when fi tting these models (e.g., Hooten et al. 
 2013 ). This would be especially useful for longer time 
series and larger spatial domains than those considered 
in our myna example. In the case of the myna, an 
invasive species whose range is expanding, we focused 
on the colonization process and included probabilities 
for extinction and for long- distance dispersal. For other 
species, the neighborhood colonization coeffi cients may 
vary temporally to refl ect colonization patterns that 
change from year to year; the persistence and long- 
distance dispersal probabilities could be functions of 
spatial or temporal covariates; and the neighborhood 
colonization probabilities could be a function of more 
than one environmental gradient variable. Alternatively, 
the models could be extended to better understand 
extinction probabilities by explicitly allowing persistence 
to evolve dynamically, as we did with the neighbor-
hood colonization.  
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